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The role of deformability in determining the
structural and mechanical properties of bubbles
and emulsions

Arman Boromand, *ab Alexandra Signoriello,c Janna Lowensohn,d

Carlos S. Orellana,d Eric R. Weeks, d Fangfu Ye,be Mark D. Shattuckf and
Corey S. O’Hernacgh

We perform computational studies of jammed particle packings in two dimensions undergoing isotropic

compression using the well-characterized soft particle (SP) model and deformable particle (DP) model

that we developed for bubbles and emulsions. In the SP model, circular particles are allowed to overlap,

generating purely repulsive forces. In the DP model, particles minimize their perimeter, while deforming

at fixed area to avoid overlap during compression. We compare the structural and mechanical properties

of jammed packings generated using the SP and DP models as a function of the packing fraction r,

instead of the reduced number density f. We show that near jamming onset the excess contact

number Dz = z � zJ and shear modulus G scale as Dr0.5 in the large system limit for both models,

where Dr = r � rJ and zJ E 4 and rJ E 0.842 are the values at jamming onset. Dz and G for the SP

and DP models begin to differ for r \ 0.88. In this regime, Dz B G can be described by a sum of two

power-laws in Dr, i.e. Dz B G B C0Dr
0.5 + C1Dr

1.0 to lowest order. We show that the ratio C1/C0 is

much larger for the DP model compared to that for the SP model. We also characterize the void space

in jammed packings as a function of r. We find that the DP model can describe the formation of Plateau

borders as r - 1. We further show that the results for z and the shape factor A versus r for the DP

model agree with recent experimental studies of foams and emulsions.

1 Introduction

Soft materials, such as grafted core–shell particles, dendrimers,
star polymers, emulsions, foams, and hydrogels, are a class of
materials for which their microstructure can be altered by
external fields, applied deformation, and thermal fluctuations
at room temperature.1,2 The ability to vary particle microstruc-
ture enables the design of soft materials with novel functional

properties and processing capabilities. Molecular architecture,
surface interactions, and deformability of soft particles can be
harnessed to develop novel soft composites with optimized energy
absorption, self-healing behavior, high mechanical strength, and
other desirable properties.3–6 In addition, many biological systems
such as biofilms,7 cell aggregates,8 and tissues9 can be considered
as collections of soft and deformable particles.

The interactions between soft particles, e.g. the softness,
range, and strength of the attraction and repulsion between
soft particles is controlled by their composition and micro-
structure. In turn, the interactions between soft particles deter-
mine the collective mechanical and rheological properties of
packings of soft particles. Significant challenges remain in
understanding the influence of particle microstructure and
interactions on the macroscopic properties of soft matter
systems. In this article, we study the role of particle deform-
ability in determining the structural and mechanical properties
of packings of quasi-2D emulsions, modeled as collections
of purely repulsive, deformable particles at and above the
jamming transition.

Systems composed of soft, frictionless particles, such as
foams and emulsions, can jam, or develop a non-zero static
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shear modulus G, when they are isotropically compressed to
packing fractions that approach random close packing fJ.

10–12

For f o fJ, packings of purely repulsive, frictionless spherical
particles have an insufficient number of interparticle contacts
for them to be mechanically stable. As a result, the packings
exist at zero pressure ( p = 0) and are fluid-like, and particle
rearrangements cost zero energy.13 When compressed to fJ, the
packings develop a connected interparticle contact network
with an isostatic number of contacts per particle zJ = Nc/N,
where Nc = 2N0 � 1, N0 = N � Nr, N is the total number of
particles, and Nr is the number of rattler particles with less than
2 contacts, for frictionless circular particles in two spatial
dimensions (2D) with periodic boundary conditions.14,15 For
f 4 fJ, the packings become solid-like with z 4 zJ and a
nonzero shear modulus G 4 0.15–17

A number of computational studies have been performed
to investigate the structural and mechanical properties of
compressed foams and emulsions in the solid-like regime
f 4 fJ.

18–21 One of the most frequently used models for
characterizing their structural and mechanical properties is
the soft particle (SP) model,16,18 for which there is a potential
energy cost proportional to the square of the overlap between
pairs of spherical particles, and no energy cost when the
particles do not overlap. These studies find that the excess
contact number above the isostatic number,

z� zJ � z
f
0 ðf� fJÞa

f
0 ; (1)

and the shear modulus,

G � G
f
0 ðf� fJÞb

f
0 ; (2)

obey power-law scaling relations with f � fJ, where the scaling
exponents af0 = bf0 = 0.5 in the large-system limit.15,16,22 Further,
these studies have found that the exponents do not vary with
the shape of the purely repulsive interaction potential and are
the same in 2D and 3D.15,17,19,22

In eqn (1) and (2), we define the packing fraction (or reduced
number density) in 2D for packings of circular disks as

f ¼
PN
i¼1

psi2=4A, where si is the diameter of disk i and A = LxLy

is the area of the simulation box with edge lengths Lx = Ly in the
x- and y-directions. Note that when using this definition of f,
the area of particle overlaps is multiply-counted. A positive
feature of the SP model is its simplicity, however, a negative
aspect is that the particles do not conserve area when the
packings are compressed above jamming onset.

There have also been a number of experimental23–26 studies
(as well as computational studies20,21) of the structural and
mechanical properties of compressed foams and emulsions in
2D and 3D. These studies also find power-law scaling of the
excess contact number,

z � zJ B (r � rJ)
a0, (3)

where a0 occurs in the range 0.4 to 1 depending on the
particular study. The power-law scaling of z � zJ is measured
versus r � rJ, not f � fJ, where r is the true packing fraction of

the system. For systems at jamming onset, rJ = fJ, but f 4 r
when particles overlap in the SP model. Also, f Z 1.0 is
allowed, whereas r r 1.0 is a hard constraint. In addition,
experimental studies of compressed emulsions in 3D have shown
that the shear modulus obeys power-law scaling in r � rJ,

G B (r � rJ)
b0, (4)

but the scaling exponent b0 4 bf0 .12,27,28

In light of the discrepancies between the power-law scaling
exponents found in the experimental studies of compressed
foams and emulsions and those obtained from the computa-
tional studies of the SP model, we employ the recently
developed deformable particle (DP) model29 for foams and
emulsions to understand how particle deformability affects
the packing fraction dependence of the structural and mechanical
properties of jammed particle packings.

Other computational methods have been employed to
model particle deformability in soft matter systems, such as
foams and emulsions. There are two main classes of methods
for modeling particle deformability: lattice Boltzmann30,31 and
particle-based methods.20,32–35 The lattice-based methods have
typically focused on two- or multi-phase modeling, whereas the
DP model focuses only on the shape degrees of freedom of the
particles (i.e. bubbles or droplets). Our work on the DP model
differs from the previous studies using particle-based methods.
First, the work by Rognon, et al.35 has been limited to small
systems composed of 2–5 particles. Second, the froth model by
Kern, et al.33 is limited to the dry regime, where the true
packing fraction approaches unity. In contrast, the DP model
can be used to study a wide range of packing fractions, from
values where the particles are out of contact to confluent
systems. The model proposed by Kähärä et al.32 is most similar
to the DP model. However, by modeling the pressure of the
carrier fluid, their study is limited to the wet regime. In
addition, their studies have focused on the rheological proper-
ties of bubbles during shear. In contrast, this article will focus
on the structural and mechanical properties of jammed
deformable particles generated during isotropic compression.

A central assumption of the SP model is that the particles
remain spherical as particle overlap increases when the system
is compressed above jamming onset. For this reason, studies
that employ the SP model typically quantify the system proper-
ties as a function of f instead of the true packing fraction r.23,24

Even though the SP model does not conserve particle area as
the system is compressed, one can also measure the structural
and mechanical properties as a function of the true packing
fraction r when using the SP model by attributing half of an
overlap between particles i and j to particle i and the other half
to particle j (see Fig. 1).

A key feature in jammed packings of foams and emulsions
is that the particles maintain their area (volume) during
compression over the full range of packing fraction. Bubbles
in foams and emulsion droplets can deform, become non-
spherical, and form additional contacts that do not occur in
the SP model at a comparable value of packing fraction as that
shown in Fig. 2(a) and (b). In this article, we show that the soft
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particle and deformable particle models show similar results
for the scaling of the excess contact number and shear modulus
versus r � rJ for packing fractions close to jamming onset.
However, for larger r, we find that z � zJ and G for the SP and
DP models begin to differ significantly. In this regime, z(r) for

the deformable particle model is similar to that found for
experimental studies of compressed emulsions and foams in
2D. We also study the geometric properties of the void space of
jammed packings as a function of r. We show that unlike the
SP model, the DP model is able to recapitulate the formation
of Plateau borders,36–39 where bubble edges have a relative
orientation of 1201 and form a void with shape factor AE 4.87,
near confluence. (The shape factor A = p2/4pa, where p is the
perimeter and a is the area of the void space.26,29)

The remainder of the article is organized as follows. In
Section 2, we describe the soft particle and deformable particle
models for 2D compresed foams and emulations, and the
isotropic compression protocol that we employ to numerically
generate jammed packings. In Section 3, we compare the
results for the structural and mechanical properties of jammed
packings using the SP and DP models. We show the variation of
r with f above jamming onset and quantify the decrease in the
average area of the particles as a function of increasing packing
fraction for the SP model. We measure r versus the shape factor
A to determine at what shape factor the SP and DP models
reach confluence. We then show the power-law scaling results
for z � zJ and G versus r � rJ for the SP and DP models. We also
characterize the connected void regions, by measuring the
number, size, and shape of the voids as a function of packing
fraction for the SP and DP models. In Section 4, we summarize
the results for the SP and DP models, compare the results for
the DP model to those from recent experiments on compressed
foams and emulsions, and discuss future research directions.

2 Simulation methods

In this article, we study the structural and mechanical properties
of isotropically compressed jammed packings of N purely

Fig. 1 A configuration of overlapping disks (e.g. dark grey regions
between overlapping light grey particles) at f = 1.0 for the SP model.
For the central green particle i that overlaps several adjacent particles, we
can define a more realistic packing fraction r for the SP model, by
associating half of each overlap to particle i and the other half to each
particle j (red region) that overlaps i. The modified shape parameter for
particle i can then be obtained by calculating the perimeter and area of the
green-colored shape. In this example, Ai = 1.025 and r = 0.95.

Fig. 2 Similar jammed packings of N = 64 bidisperse disks [half large (blue) and half small (pink) disks with diameter ratio sL/sS = 1.4] with packing
fraction r E 0.92 generated using the (a) soft particle (SP) model and (b) deformable particle (DP) model for foams and emulsions. The average shape
parameter is hAi E 1.01 and 1.03 for the SP and DP models, respectively. The dashed boxes highlight extra contacts that form in the packing of
deformable particles compared to the soft particle packing during compression. (c) Close-up of a jammed configuration of N = 128 deformable particles
at r = 0.99 and shape parameter hAi = 1.06. Each deformable particle is a collection of Nv interconnected circulo-lines with width d. The system includes
N/2 large particles with Nv = 17 and N/2 small particles with Nv = 12. The preferred areas of the particles (in eqn (7)) are aL0 and aS0, for the large and small
particles, respectively, with aL0/aS0 E 2.0. The inset shows two interacting deformable particles m and n. Uint is proportional to (d � dmin)2, where dmin is
the minimum distance between overlapping circulo-lines j and k on deformable particles m and n.
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repulsive, frictionless bidisperse particles in 2D using the
soft particle and deformable particle models. For both models,
the simulation cell is square with periodic boundaries in both
directions.

2.1 Soft particle model

For the soft particle model, pairs of circular disks i and j
interact via the purely repulsive pairwise potential:

USPðrijÞ ¼
e
2

1� rij

sij

� �2

Y 1� rij

sij

� �
; (5)

where e is the characteristic energy scale of the interaction,
sij = (si + sj)/2 is the average diameter and rij is the center-to-
center separation between disks i and j, and Y(�) is the Heavi-
side step function that sets the interaction potential to zero
when disks i and j do not overlap. We focused on systems
composed of N/2 large and N/2 small disks with equal mass m
and diameter ratio, sL/sS = 1.4 to avoid crystallization. The total
potential energy for the SP model is USP ¼

P
i4 j

USPðrijÞ and the

stress tensor is given by

Smn ¼ A�1
XN
i4 j

fijmrijn ; (6)

where m, n = x and y and ~fij ¼ �~rrijUSPðrijÞ. To measure the

shear modulus G, we apply an infinitesimal affine shear strain g
to the x-positions of the particle centers, xi

0 = xi + gyi, and
measure the resulting shear stress Sxy. We then calculate
the shear modulus G = �dSxy/dg (at fixed area). For the SP
model, we measure energy, length, and stress in units of e, sLS,
and e/sLS

2.

2.2 Deformable particle model

To model bubbles and droplets, we consider the deformable
particle model29 for foams and emulsions with a potential
energy that includes the following three terms:

UDP ¼ g
XN
m¼1

XNv

i¼1
lm;i þ

ka

2

XN
m¼1
ðam � am0Þ2 þUint: (7)

Each deformable ‘‘particle’’ (indexed by m = 1,. . .,N) is modeled
as a polygon with Nv circulo-line edges to represent Nv � 1
shape degrees of freedom. The circulo-lines have width d40 and
are indexed by i = 1. . .,Nv (see Fig. 2c). We consider N/2 large
particles with Nv = 17 and N/2 small particles with Nv = 12, and
aL0/aS0 = (17/12)2 E 2.0, which is similar to the area ratio of the
large and small disks in the SP model. We have also studied DP
packings with larger numbers of vertices (while maintaining
aL0/aS0 E 2.0), and the structural and mechanical properties
are similar to those for Nv = 17 and 12 for the large and small
particles, respectively. The location of the ith circulo-line in
particle m is -

vm,i, and the bond vector
-

lm,i = -
vm,i+1 �

-
vm,i = lm,il̂m,i

connects circulo-lines i + 1 and i.
The first term in UDP is proportional to the total length of the

interface, i.e. the perimeter, pm ¼
PNv

i¼1
lm;i of the mth particle with

a proportionality constant equal to the line tension g. The
second term is quadratic in am with a minumum at aL,S0, which
penalizes deviations in area from the reference value aL,S0.
Here, we study kaaL,S0

2 4 103, which implies that the fluctua-
tions in the particle areas are t10�3. We characterize the shape
of the deformable particles by calculating the particle shape
parameter Am = pm

2/4pam, which equals 1 for circular disks and
is greater than 1 for all non-spherical shapes.29,41

Note that for the DP model for foams and emulsions, we
remove the constraint on the elastic interface,29 i.e. the pre-
ferred bond length, lm,i = 0. As a result, the spacing between the
vertices on a given deformable particle can change as they
interact with vertices on neighboring particles. This allows us to
correctly model the formation of elongated edges when deform-
able particles make contacts (such that lm,i 4 0), as well as
model the formation of Plateau borders36,37 with lm,i - 0.

The third term, Uint, penalizes overlaps between deformable
particles by including purely repulsive interactions between
pairs of contacting circulo-lines on neighboring deformable
particles:

Uint ¼
XN
m¼1

XN
n4m

XNv

j¼1

XNv

k¼1

er
2

1� dmin

d

� �2

�Y 1� dmin

d

� �
; (8)

where er gives the strength of the repulsive interactions, dmin is
the minimum distance between circulo-lines j and k on con-
tacting deformable particles m and n, and Y(�) ensures that
there is no interaction when the circulo-lines on different
particles are out of contact. The stress tensor for packings of

deformable particles is obtained using Smn ¼ A�1
PN
i¼1

f extim rcin ,

where ~f exti ¼ �~rriUint is the force on particle i arising from Uint

and -
ri is the position of the centroid of particle i.

To measure the shear modulus G, we apply an infinitesimal
affine shear strain g to the x-positions of the i = 1,. . .,Nv circulo-
lines on each particle m, vxm,i

0 = vxm,i + gvym,i, and measure the
resulting shear stress Sxy. We then calculate the shear modulus
G = �dSxy/dg (at fixed area). For the DP model, we measure
energy, length, and stress in units of er, l, and er/l

2, where
l ¼ ffiffiffiffiffiffiffi

aS0
p þ ffiffiffiffiffiffiffi

aL0
p� �

=2. The structural and mechanical properties
of DP packings at jamming onset do not depend on the
parameters g, ka, and er. However, above jamming onset, the
properties can depend on these parameters. We focused on
the parameter regime, er 4 ka(aL,S0)2 4 ghpmi, which is typical
for foams and emulsions.

2.3 Isotropic compression packing protocol

The protocol to generate jammed packings is similar for the SP
and DP models. The protocol proceeds in two stages. For each
initial condition, we first identify the packing fraction rJ = fJ at
jamming onset. For the SP model, the system is initialized
using random locations for the disks at r = 0.20. For the DP
model, we place the particle centers randomly at r = 0.20 and
then position the Nv circulo-lines equally spaced around each
particle center. We successively isotropically compress the
system (by decreasing the size of the simulation cell) using
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small packing fraction increments (df = 10�4 for the SP
model and dr = 10�4 for the DP model) and minimize the
total potential energy per particle, USP/N, for the SP model (or
UDP/(NNv) for the DP model) after each compression step using
over-damped molecular dynamics simulations until the kinetic
energy per particle satisfies K/N o 10�20 for the SP model and
the total kinetic energy per circulo-line K/(NNv) o 10�20 for the
DP model. If USP/N or UDP/(NNv) is ‘‘zero’’ (i.e. USP/N o 10�15 or
UDP/(NNv) o 10�15) after minimization, the system is sub-
sequently compressed. If USP/N or UDP/(NNv) is nonzero,
i.e. there are finite particle overlaps and USP/N 4 10�13 or
UDP/(NNv) 4 10�13, after minimization, the system is sub-
sequently decompressed. The increment by which the packing
fraction is changed at each compression or decompression step
is gradually decreased.

We terminate the process of finding the onset of jamming
at rJ or fJ when the system satisfies 10�13 o USP/N o 10�16 and
K/N o 10�20 for the SP model or 10�13 o UDP/(NNv) o 10�16

and K/(NNv) o 10�20 for the DP model. This process yields
mechanically stable packings at jamming onset.

The second stage of the protocol involves sampling the
system at set of packing fractions r � rJ 4 0 above jamming
onset with adjacent values separated by dr = 10�4 for the DP
model or a set of f � fJ 4 0 with adjacent values separated by
df = 10�4 for the SP model. Ensemble averages are obtained by
averaging over systems at fixed f � fJ or r � rJ for the SP and
DP models, respectively, where fJ and rJ are determined
separately for each initial condition. The distribution of fJ

and rJ for the SP and DP models are shown for several system
sizes in the Appendix.

3 Results

Below, we compare the results for the structural and mechanical
properties of particle packings as a function of packing fraction

above jamming onset obtained using the soft particle and
deformable particle models. These studies allow us to investi-
gate the effect of particle deformability on the structural and
mechanical properties of jammed solids. As discussed in
Section 1, there are several key differences between the SP
and DP models. For example, the SP model allows overlap
between particles and concomitant decreases in the particle
area as the system is compressed above jamming onset. In
contrast, the particles in the DP model deform to prevent
interparticle overlaps, and thus they maintain their areas, and
do not remain circular in shape.

A method to minimize the effects of the loss of particle area
for the SP model is to quantify the structural and mechanical
properties of jammed packings generated using the SP model
as a function of the true packing fraction r, not f. To measure r
at each f 4 fJ, we need to subtract from fA the multiply-
counted areas of overlapping disks. For f o 1.2, we only need
to consider overlaps between pairs of disks, i.e. subtract off the
area of each lens between pairs of overlapping disks (see Fig. 1).
In this case, the true packing fraction is

r ¼
XN
i¼1

psi2

4A
� 1

A

XN
i4 j

aovij ; (9)

where

aovij ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð�rij þ sijÞðrij � �sijÞðrij þ �sijÞðrij þ sijÞ

p
2

(10)

is the area of the lens between overlapping disks i and j and
�sij = (si � sj)/2. For f4 1.2, the lens between overlapping disks
i and j can overlap with the lens of other overlapping pairs of
disks, which modifies eqn (9).

In Fig. 3(a), we plot the deviation in the true packing fraction
from that at jamming onset, Dr = r � rJ, versus the deviation in
the reduced number density f from the value at jamming
onset, Df = f � fJ, for jammed packings generated using the

Fig. 3 (a) The packing fraction r � rJ versus the reduced number density f � fJ for static packings of N = 32 bidisperse disks using the SP model. The
dashed line is r = f. The solid line indicates r � rJ = C(f � fJ)0.5[1 � (f � fJ)], where C = O(1). (b) Average particle area hai normalized by the value at
jamming onset aJ as a function of r � rJ for the SP (downward triangles) and DP (diamonds) models with N = 32. The dashed line has the form a/aJ � 1 p

(r � rJ)z, with z E 2.5 to capture the large r � rJ behavior. (c) The packing fraction r � rJ and reduced number density f � fJ versus the shape
parameter, A � 1, for the DP (diamonds) and SP (triangles) models. f = 1 occurs at A = 1.03 for the SP model (filled triangles). In contrast, r = 1 at A 4
1.10 for the SP model (open triangles). Packings generated using the DP model reach confluence at A E 1.07. The dashed-dotted line has the form
r� rJ p (A� 1)o with oE 0.3 for the DP model, which captures the large r� rJ behavior. The dashed line through the SP model data has a similar form,
but with two scaling regimes: one at small A � 1 with o E 0.5 and one at large A � 1 with o E 0.3. The solid line has the form f � fJ p (A � 1)l with
l E 0.67 for the SP model.
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SP model. On a linear scale, r E f for f t 0.88. More
generally, we find

Dr E C(Df � Df1.5), (11)

where C is weakly dependent on f (see Fig. 10(a) and (b) in the
Appendix). Note that eqn (11) is exact when higher-order over-
laps (i.e. the lens from overlapping disks i and j overlaps with
the lens from other overlapping disks) do not occur. To study
the structural properties of the SP model near confluence,
r - 1, we also considered cases where three disks mutually
overlap. The true packing fraction becomes

r ¼
XN
i¼1

psi2

4A
� 1

A

XN
i4 j

aovij þ
2

A

XN
k4 i;j

aovijk; (12)

where aov
ijk is the area of the Reuleaux triangles that form when

three disks mutually overlap. Using this approximation, we find
that r - 1 near f E 1.24.

As discussed in the introduction, for packings generated
using the SP model, the area of the particles decreases with
increasing packing fraction above jamming onset. We calculate
the average area of the particles (normalized by the average at
jamming onset) hai/aJ versus Dr for packings generated using
the SP and DP models in Fig. 3(b). On a linear scale, hai begins
deviating significantly from aJ for Dr \ 0.04 for the SP model.
In the Appendix, we show that a/aJ � 1 pDrz with an exponent
zE 1.5 at small Dr and zE 2.5 at large Dr for the SP model. In
contrast, hai E aJ over the full range of Dr for the DP model.

In Fig. 3(c), we quantify how the particles deform during
isotropic compression above jamming onset. In general, the
packing fraction increases with the shape parameter A � 1. In
the Appendix, we show that r � rJ grows as a power-law in the
deviation of the shape parameter from that at jamming onset,
(A � 1)o. At small A� 1, oE 0.66 and E1.0 for the SP and DP
models, respectively. At large A � 1, o E 0.3 for both the SP
and DP models. f � fJ for the SP model also grows as a power-
law with A � 1, but much faster than r � rJ.

At what shape parameter do 2D foams and emulsions reach
confluence? Fig. 3(c) shows that the DP and SP models reach
confluence (Dr E 0.16) at different values of the shape para-
meter, A E 1.07 for the DP model and A 4 1.10 for the SP
model. Thus, we find similarities and differences between the
shapes of the particles for packings generated using the SP and
DP models as they are compressed above jamming onset. An
interesting similarity is that the packing fraction for both the
SP and DP models scales as r � rJ B (A � 1)o, where o E 0.3
at large r.

Next, we compare the contact number z and shear modulus
G versus the packing fraction for the SP and DP models. On a
linear scale, which emphasizes the values at large packing
fraction, we find weak system-size dependence for z and G for
packings generated via the SP and DP models. Note that for
the deformable particle model, multiple circulo-lines on one
deformable particle can be in contact with multiple circulo-
lines on another deformable particle. These multiple circulo-line

contacts are treated as a single contact between two deformable
particles.

In Fig. 4, for both z and G, measured in packings of N = 256
particles, the results for the SP and DP models are similar near
jamming onset fJ E rJ. For z and G, the results for the SP and

Fig. 4 (a) The number of contacts per particle z and (b) shear modulus G

versus the true packing fraction r for jammed packings of N = 256
particles generated using the SP (open downward triangles) and DP
models (open diamonds). We also show z and G versus the reduced
number density f for the SP model (filled downward triangles). The dashed
and dashed-dotted lines are fits of z and G versus Dr for the DP and SP
models, respectively, using the forms in Tables 1 and 2. The solid lines are
fits of z(Df) and G(Df) to the forms in Tables 1 and 2 for the SP model. The
dashed-dotted vertical lines indicate the packing fraction above which the
measurements start to deviate from the power-law scaling forms in
eqn (13) and (14).
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DP models begin to deviate near r E 0.88. We find that more
interparticle contacts form as the packings are compressed
above jamming onset for the DP model, compared to that for
the SP model. As a result, the shear modulus grows more
rapidly with r for packings generated using the DP model.
We also show the best fits of z and G for the SP model to the
power-law scaling form with Df in eqn (1) and (2). As found
previously, the scaling exponents af0 = bf0 E 0.5 for the SP
model.13,15 By plugging eqn (11) into eqn (1) and (2), we can
convert z(Df) and G(Df) to z(Dr) and G(Dr). To lowest order
in Dr, we find

z� zJ � z
r
0ðr� rJÞa

r
0 þ z

r
1ðr� rJÞa

r
1 (13)

and

G � G
r
0ðr� rJÞb

r
0 þ G

r
1ðr� rJÞb

r
1 (14)

for the SP model, where ar0 E br0 E 0.5 and ar1 E br1 E 1.0. We
show fits of z(Dr) and G(Dr) for the SP model to eqn (13) and
(14) as dashed-dotted lines in Fig. 4. The combination of the
two power-laws in Dr with exponents 0.5 and 1.0 accurately
describes the data for Dz and G. However, Dz begins deviating
from eqn (13) for r \ 0.98 near confluence. Moreover, we find
that eqn (13) and (14) can be used to fit the data for the DP
model as well. The parameters for the fitting functions are
shown in Tables 1 and 2.

In Fig. 5(a) and (d), we present the excess contact number
z � zJ and shear modulus G versus Df on logarithmic axes for
jammed packings using the SP model for system sizes ranging
from N = 32 to 256. By plotting the data on logarithmic scales,
we can identify several different regimes in Df: (1) Df o 10�3,
(2) 10�3 o Df o 0.2, and (3) Df 4 0.2. Regime 1, where
fE fJ, is difficult to see on the linear scales shown in Fig. 4(a).
In this regime, there is strong system-size dependence and
Dz B Df and G B Df0.22,42 As found previously, at inter-

mediate Df, Dz � Dfaf
1 and G � Dfbf

1 , where af1 E bf1 E 0.5.
The characteristic Df* at which the a and b exponents cross-over
from 1 to 0.5 and 0 and 0.5, respectively, scales as Df* B N�2 (see
Tables 1 and 2). Thus, regime 2 extends to smaller Df as the
system size increases. In regime 3, at large Df, we find that the
power-law scaling behavior of Dz and G with Df breaks down.

Using eqn (11), we can convert the data from functions of Df
to functions of Dr for the SP model. We show Dz(Dr) and G(Dr)
in Fig. 5(b) and (d). We find two different regimes in Dr. At low
Dr, z � zJ B Dr and GB Dr0. At intermediate and large Dr, the
forms for z � zJ and G include a sum of two power-laws as
shown in eqn (13) and (14). The characteristic packing fraction
that separates the small and large Dr regimes also scales as
Dr* B N�2.

In Fig. 5(c) and (f), we show Dz and G versus Dr for the DP
model. The data also show two regimes in Dr. At small Dr,
Dz B Dr and G B Dr0. At intermediate and large Dr, we fit Dz
and G to a sum of two power laws with exponents 0.5 and 1
(see Tables 1 and 2). Note that the scaling of Dz and G for the
DP model is similar to that for the SP model (eqn (13) and (14)),
but the ratio of the coefficient for the linear term in Dr to that
for the Dr0.5 term is much larger than the corresponding ratio
for the SP model. If we use only a single power law exponent to
fit the data for Dz and G at large Dr, we find a best fit exponent
of 0.8 for both Dz and G. Winkelmann, et al.20 recently studied
packings of bubbles and showed that z � zJ B (r � rJ)

a0 with an
exponent a0 = 10, which is larger than the value we find if we use
a single power-law to fit the data for Dz for Dr 4 10�2.

In Fig. 5(a) and (b), the data for Dz begin to plateau at large
Df or Dr, indicating that the packings are reaching confluence
with zconf = 6 at r = r*, where r* - 1 in the large system limit.
To understand the scaling of z near confluence, we plot zconf� z
versus r* � r. For the SP model, we use eqn (12) to determine r.
We find that the data for zconf � z versus r* � r for different
system sizes can be collapsed onto a master curve when we
scale zconf � z and r* � r by N as shown in the inset to Fig. 6(a).
However, as r - r*, (zconf � z)N does not approach zero for the
SP model. Instead, (zconf � z)N - 2. (zconf � z)N approaches a
finite value because eqn (12) does not account for all multiply-
counted overlaps between mutually overlapping pairs of disks
(i.e. beyond three mutually overlapping disks). For the DP
model, zconf � z versus r* � r can also be collapsed onto a
master curve when both zconf � z and r* � r are scaled by N
(Fig. 6(b)). Unlike the SP model, for the DP model we find that
zconf � z scales as r* � r in the large system limit over several
orders of magnitude in r* � r.

In addition to the contact number and shear modulus, we
also studied the variation of the structure of the void space of
jammed packings as a function of packing fraction r. To do
this, for each jammed packing, we identify all of the void space
that is not occupied by particles. We then determine the
connected void regions (i.e. one can reach any part of a
connected void region from any point in the region). The
topology of each connected void can be characterized by the
number of edges, or the smallest number of particles that form
a loop on the perimeter of the void region (using the depth first
search algorithm).43 In Fig. 7(a), we compare the probability
Pl(r) to have a void with l sides as a function of r for the SP and
DP models. Near rJ, the SP and DP models are identical and we
find that the distributions Pl(rJ) are the same for the two
models. In this regime, the probability of 3- and 4-sided voids
are similar (B0.4), while the probabilities for 5- and 6-sided

Table 1 Parameters for the scaling forms for the excess contact number
Dz(Df) and Dz(Dr) (eqn (1) and (13)) for the SP and DP models

Model zJ � 0.005 fJ, rJ � 0.005 zf,r
0 af,r

0 zf,r
1 af,r

1

SP(f) 3.97 0.84 3.7 0.5 0 1.0
SP(r) 3.97 0.84 2.6 0.5 4.0 1.0
DP(r) 3.97 0.835 3.3 0.5 7.1 1.0

Table 2 Parameters for the scaling forms for the shear modulus G(Df)
and G(Dr) (eqn (2) and (14)) for SP and DP models

Model fJ, rJ � 0.005 Gf,r
0 bf,r

0 Gf,r
1 bf,r

1

SP(f) 0.84 0.42 0.5 0 1.0
SP(r) 0.84 0.38 0.5 0.35 1.0
DP(r) 0.835 0.07 0.5 1.7 1.0
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voids are much smaller (B0.18 and B0.02). For r \ 0.88, Pl(r)
for the DP model begins to deviate from that for the SP model.
Similar behavior was found for the deviation in the contact
number Dz(r) for r \ 0.88. For the DP model, we find an
increase in the probability of 3-sided voids over that for the SP
model and a comparable decrease in the probability of 4-sided
voids relative to the SP model. For the DP model, we find that
P3 = 1 for r \ 0.97. In contrast, P3 = 1 only in the limit r - 1
for the SP model. Further, we find that the shape parameter

A ¼ Ap ¼ p=ð4
ffiffiffi
3
p
� 2pÞ � 4:87 of the 3-sided voids for the DP

model is independent of r, indicating that the DP model
correctly captures the structure of the Plateau borders that
form as r - 1. However, the shape parameter of the 3-sided
voids varies from A E Ap to less than 2 as r increases from rJ

to 1 for the SP model, which indicates that the void structure
for the SP model differs significantly from that for jammed
packings of foams and emulsions near confluence.

In Fig. 8, we show preliminary studies comparing the results
for jammed packings generated using the DP model to the
results from optical microscopy experiments of quasi-2D com-
pressed emulsion droplets.23 We find that the contact number z
versus r for the DP model closely matches that from the

experiments (Fig. 8(c)). In addition, we show that the evolution
of the shape factor of the particles with packing fraction above
jamming onset is similar for the DP model and experiments
(Fig. 8(d)). However, we encourage additional experiments on
compressed foams and emulsions to be performed with pack-
ing fraction r \ 0.95 to determine whether the DP model can
recapitulate the structural and mechanical properties of
compressed emulsions near confluence. For example, new
experimental studies can test the prediction for the DP model
that zconf � z scales linearly with 1 � r near r = 1.

4 Discussion and conclusions

In this article, we investigated the structural and mechanical
properties of jammed packings undergoing isotropic compres-
sion in 2D using the soft particle (SP) model18,44 and the new
deformable particle model29 that we developed for bubbles and
emulsions. The SP model has been widely used to characterize
the structural, mechanical, and rheological properties of
jammed particulate systems including granular materials,15

dense colloidal suspensions,45 foams,18 and emulsions.46

Fig. 5 Panels (a and d) show the excess contact number z � zJ and shear modulus G plotted versus Df for the SP model. (b) and (e) show the same data
in panels (a and d), except plotted versus Dr. Panels (c and f) show z � zJ and G versus Dr for the DP model. Each symbol represents different system
sizes: N = 32 (squares), 64 (circles), 128 (upward triangles), and 256 (downward triangles). The dotted lines in panels (a–c) have slope equal to 1. The solid
line in (a), dashed-dotted line in (b), and dashed line in (c) are the same fits to the data as in Fig. 4(a). The dotted lines in panels (d–f) have slope equal to
0.8. The solid line in (d), dashed-dotted line in (e), and dashed line in (f) are the same fits to the data as in Fig. 4(b).
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The key difference between the two models is that in the SP
model, the particles decrease in area as the system is com-
pressed above jamming onset, while the DP model conserves
particle area during compression. Studies that have employed
the SP model typically characterize the properties of jammed
packings as a function of the reduced number density f,13,16,17

rather than using the true packing fraction r. In this work, we
provide direct comparisons of the structural and mechanical
properties of packings generated using the SP and DP models
as a function of the packing fraction r.

First, we showed explicitly that the SP and DP models give
the same results near jamming onset, where the disks are
undeformed. In particular, we showed that the probability
distribution P(rJ) of jamming onsets rJ E fJ are nearly iden-
tical for the SP and DP models with rJ E 0.842 in the large
system limit. (For the detailed discussion of this point, see the
Appendix.) In addition, we find similar scaling behavior for
the excess contact number z � zJ and shear modulus G versus
r � rJ. Near jamming onset, for both the SP and DP models,
z� zJ B (r� rJ)

1.0 and GB (r� rJ)
0 for small systems.22,42 This

scaling behavior occurs for r � rJ o Dr*, where Dr* B N�2. In
the large system limit, z � zJ B G B (r � rJ)

0.5 near jamming
onset for both the SP and DP models.

For packings that are compressed above jamming onset, we
determined the relation between the packing fraction r and
reduced number density f for the SP model. Using this
relation, we showed that for the SP model Dz(Dr) B G(Dr)
can be represented as a sum of power-laws in Dr (not a
single power-law), with Dr0.5 and Dr1.0 as the lowest order
terms. The scaling of Dz and G is similar for the DP model,
but the ratio of the coefficient for the linear term in Dr to that
for the Dr0.5 term is much larger than the corresponding ratio
for the SP model. As a result, we find that z(r) and G(r)
are larger for the DP model compared to the SP model for
r \ 0.88.

Fig. 6 The deviation in the contact number zconf � z versus r* � r, where
r* is the packing fraction at which z = zconf = 6, for (a) the SP and (b) DP
models. For both the SP and DP models, we show a range of system sizes:
N = 32 (squares), (circles), 128 (upward triangles), and (downward trian-
gles). The vertical dashed-dotted lines indicate the values of r* � r that
correspond to the vertical dashed-dotted lines in Fig. 4(a). The insets show
the same data as in the main panels except zconf � z and r* � r are scaled
by N. The horizontal dashed line in the inset to panel (a) is (zconf � z)N = 2.

Fig. 7 (a) Probability Pl to have a void with l sides (l = 3 (red), 4 (green),
5 (pink), and 6 (cyan)) for jammed packings as a function of r for the
SP (symbols) and DP models (lines). For both models, we studied
ensembles of 500 jammed packings of N = 64 bidisperse particles. The
void probability is normalized such that

P
l

PlðrÞ ¼ 1. We also show

snapshots of jammed packings using (b) the DP and (c) SP models
at r = 0.97. The large (small) particles are outlined in blue (pink).
3- and 4-sided voids are shaded red and green, respectively. The square
boxes with a solid outline indicate the main simulation cells. The inset in
panel (b) is a close-up of the region within the small box with a dashed
outline.
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In addition, we characterized the void space in jammed
packings26,47 as a function of packing fraction for both models.
We showed that the DP model can recapitulate the formation of
Plateau borders as the deformable particles become tightly
packed. The probability to obtain 3-sided voids becomes unity
for r\ 0.97 and the shape factor of the 3-sided voids (AEAp)
is independent of r. In contrast, for the SP model, the prob-
ability of 3-sided voids only becomes unity in the limit r - 1
and A o Ap over the full range of packing fraction. Thus, the
SP model does not capture the topological features of the void
space of packings of compressible bubbles near confluence. We
believe that the results from this article will inspire additional

experimental and theoretical studies of the collective behavior of
droplets and bubbles in emulsions and foams. For example, the DP
model can be extended to include attractive interactions to inves-
tigate the mechanical response of attractive emulsions in both 2D
and 3D.48 In addition, active forces can be added to each circulo-
line in the DP model to simulate collective motion, such as
swarming and migration, in cell aggregates as well as living tissues.

Conflicts of interest

There are no conflicts to declare.

Fig. 8 (a) An example optical microscopy image of over-compressed quasi-2D oil droplets in water at packing fraction r = 0.91 � 0.1.23 The average
droplet size is D E 200 mm. The scale bar in (a) is 200 mm. (b) Processed image in (a) from which we measured the shape parameter A � 1, contact
number, and local packing fraction of each droplet using surface-voronoi tessellation (green lines). As A increases from 1 to 1.08 the color varies from
dark blue to dark red. (c) Contact number z plotted versus r for the DP model (open diamonds) and experiments (filled triangles: emulsions23 and filled
circles: foams24). (d) r versus A� 1 for the DP model (open diamonds). We also include a scatter plot of r versus A� 1 for B150 emulsion droplets (filled
triangles: emulsions23).

Fig. 9 (a) The probability distribution P(fJ) to have reduced number density fJ at jamming onset for the SP model and (b) the probability distribution
P(rJ) to have packing fraction rJ at jamming onset for the DP model for several systems sizes: N = 32 (squares), 64 (circles), 128 (upward triangles), and
256 (downward triangles). The insets in both panels give the fraction fJ of the packings (out of 500) that are jammed at or below a given fJ (or rJ) for the
SP and DP models.
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Appendix

In this Appendix, we provide additional calculations to support
the conclusions described in the main text. In Fig. 9, we show
the distribution of the reduced number densities P(fJ) for the
SP model (panel (a)) and the distribution of packing fractions
P(rJ) for the DP model (panel (b)) at jamming onset using the
isotropic compression protocol discussed in Section 2.3 (we
also include the fraction fJ of packings with fJ (or rJ) at or below
a given value in the insets to Fig. 9(a) and (b)). The distributions
for the SP and DP models were obtained using the same initial
random particle positions. At jamming onset fJ = rJ, and thus
the distributions P(fJ) and P(rJ) for the SP and DP models are
nearly identical. Similar to previous studies, we also find that
the root-mean-square deviation in the packing fraction at
jamming onset scales as DfJ B N�y, with y E 0.55, and
fJ - 0.842 in the large system limit.

In Fig. 10, we show a series of scaling laws for several
physical quantities and compare the behavior for packings
generated using the SP and DP models. In Fig. 10(a), we
show that r � f B (USP/N)k, where k E 0.75, for the SP
model. The scaling exponent k can be obtained by assuming

f � r p Df1.5 from eqn (11) and using Df B (USP/N)0.5

from eqn (5).
In Fig. 10(b), we show Dr = r � rJ versus Df = f � fJ for

packings generated using the SP model. The dashed line obeys
eqn (11) with C E 1.2. As discussed in Section 3, the relation
between Dr and Df only holds when multiply-counted overlaps
(i.e. beyond pairwise overlaps) are absent. Combining the
results from Fig. 10(b) and 3(a), we see that eqn (11) holds over
nearly 10 orders of magnitude in Df. In Fig. 10(c), we show
the data for the relative deviation in the area of the particles
1 � hai/aJ versus r � rJ from Fig. 3(b) on logarithmic scales for
the SP model. In contrast to the DP model, the SP model does not
conserve particle area when overcompressed above jamming
onset. We find two power-law scaling regimes. 1 � hai/aJ B Drz

with z E 1.5 and 2.5 at small and large Dr, respectively.
In Fig. 10(c) and (d), we characterize the change in particle

shape as the packings are compressed above jamming onset for
the SP and DP models. We show that Dr B (A � 1)o, but the
scaling exponent takes on different values in the for small and
large values of A � 1. At small A � 1, o E 0.66 and E1.0 for
the SP and DP models, respectively. At large A � 1, oE 0.3 for
both the SP and DP models.

Fig. 10 (a) The difference between the reduced number density, f, and true packing fraction r versus the total potential energy per particle,
USP/N, averaged over 500 jammed packings of N = 32 disks generated using SP model. The solid line has slope equal to 0.75. (b) Dr = r � rJ plotted
versus f� fJ for the SP model. The dashed line represents eqn (11) with C = 1.21. (c) The relative deviation in the particle area from that at jamming onset,
1� hai/aJ plotted versus r� rJ for the SP model. The solid and dashed-dotted lines have slopes equal to 1.5 and 2.5, respectively. (d) r� rJ plotted versus
the shape parameter, A � 1, for the (d) SP and (e) DP models. The solid and dashed-dotted lines in panel (d) have slopes equal to 0.67 and 0.3,
respectively. The solid and dashed-dotted lines in panel (e) have slopes equal to 1 and 0.3, respectively.
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