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Studies of random close packing of spheres have advanced our knowledge about the structure of systems
such as liquids, glasses, emulsions, granular media, and amorphous solids. In confined geometries, the struc-
tural properties of random-packed systems will change. To understand these changes, we study random close
packing in finite-sized confined systems, in both two and three dimensions. Each packing consists of a 50-50
binary mixture with particle size ratio of 1.4. The presence of confining walls significantly lowers the overall
maximum area fraction �or volume fraction in three dimensions�. A simple model is presented, which quantifies
the reduction in packing due to wall-induced structure. This wall-induced structure decays rapidly away from
the wall, with characteristic length scales comparable to the small particle diameter.
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I. INTRODUCTION

Random close packing �rcp� has received considerable
scientific interest for nearly a century dating back to the
work of Westman in 1930 �1–6� primarily due to the rel-
evance rcp has to a wide range of problems, including the
structure of living cells �7�, liquids �8,9�, granular media
�10–13�, emulsions �14�, glasses �15�, amorphous solids �16�,
jamming �17�, and the processing of ceramic materials �18�.
Typically, one defines rcp as a collection of particles ran-
domly packed into the densest possible configuration. More
rigorous definitions are available �7�, but it is generally
accepted that the rcp density of a packing of spheres is
�rcp�0.64. Packings can have other rcp densities when the
particles are polydisperse mixture of spheres �19–24�, non-
spherical in shape �25–29�, or confined within a container
that is comparable in size to a characteristic particle size
�18,30–39�.

While most studies of rcp focus on infinite systems, real
systems have boundaries and often these boundaries are im-
portant as highlighted by Carman in 1937 �30�. In the experi-
ments by Carman, the packing fraction dependence on con-
tainer size was measured for spheres poured into a
cylindrical container and shaken for sufficiently long enough
time to reach a very dense state. It was found that the pack-
ing fraction decreases with container size, which was attrib-
uted to the boundaries, altering the structure of the packing
in the vicinity of the wall.

Since the work of Carman, there have been many other
studies, which have investigated rcp in confined systems
�6,35,40,41�. These studies have shown that near the bound-
ary, particles tend to pack into layers, giving rise to a fluc-
tuating local porosity with distance from the wall, ultimately
affecting the macroscopic properties of highly confined sys-
tems. Other studies have examined the packing of granular
particles in narrow silos, focusing on the influence of con-
finement on stresses between particles and the wall �42–45�.
Nearly all of these studies did not directly measure the local
packing or any local packing parameters with relation to dis-
tance from the side wall, with the exception of a few experi-
ments that used x-ray imaging to view the structure of con-
fined packings. In these experiments, the packings were

monodisperse, facilitating highly ordered packing near the
boundary, with measurements carried out at only a few dif-
ferent container size to particle size ratios �37,41�.

Even with the history of work on the study of rcp in
confined geometries, there is little known about how sensi-
tive the structure of the packing near the boundary is to small
changes in the confining width. For example, prior work
found nonmonotonic dependence of �rcp on container size
but only at extremely small containers with narrow dimen-
sions h only slightly larger than the particle diameter d, that
is, h�3d or smaller �30,36,38�. However, their data were not
strong enough to look for such effects at larger container
sizes. Additionally, primarily only confined monodisperse
systems have received much attention, and these systems are
susceptible to crystallization near flat walls, which greatly
modify the behavior �46�. �One group did study binary sys-
tems, but they were unable to directly observe the structure
�35�.� Furthermore, two-dimensional �2D� confined systems
have not been studied systematically, although they are rel-
evant for a wide range of granular experiments �47�.

In this paper, we address these questions using computer-
simulated rcp packings in confined geometries. In particular,
we study binary mixtures to prevent wall-induced crystalli-
zation �48–50�. We create 2D and three-dimensional �3D�
packings with flat confining walls. In some cases, the system
is confined only along one dimension �with periodic bound-
aries in the other directions�, and in other cases we confine
the sample along all directions. Our simulations are carried
out at many different and very closely spaced confining
thicknesses, spanning a large range of values to elucidate the
effects small changes in confining thickness has on the struc-
ture.

We find that confinement significantly modifies the rcp
states, with lowered values for �rcp, reflecting an inefficient
packing near the walls. This inefficient packing persists sev-
eral particle diameters away from the wall, although its
dominant effects are only within 1 to 2 diameters. The be-
havior of �rcp is not monotonic with increasing sample thick-
ness, reflecting the presence of boundary layers near the
walls.

Understanding the character of random close packing in
confined geometries may be relevant for non-close-packed
confined situations �51�. For example, when a liquid is con-
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fined, its structure is dramatically changed; particles form
layers near the wall, which ultimately affects the properties
of the liquid �52–57�. The shearing of confined dense colloi-
dal suspensions shows the emergence of new structures not
seen before �58�. The flow of granular media through hop-
pers �59,60� or suspensions through constricted microfluidic
and nanofluidic devices �61–64� can jam and clog, costing
time and money.

One of our own motivations for this work was to help us
understand prior experiments by our group, which studied
the confinement of colloidal particles �65�. A dense suspen-
sion of colloidal particles behaves similarly to a glass �66�.
For traditional glass formers, many experiments have studied
how confinement modifies the glass transition; samples,
which have a well-characterized glass transition in large
samples, show markedly different properties when confined
to small samples �50,51,67–72�. In our experimental work,
the colloidal particles had much slower diffusion rates when
confined between two parallel walls �65�. However, the ex-
periments were difficult and we only examined behavior of a
dense suspension at a few specific thicknesses. As noted
above, in this current work we investigate how particles pack
for a finely spaced set of thicknesses, to look for nonmono-
tonic behavior of the packing that might have been missed in
the experiment. A second related question is whether con-
finement effects on glassy behavior are due to boundary ef-
fects or finite-size effects �73�. Our results show that bound-
aries significantly modify the packing, which may in turn
modify the behavior of these confined molecular systems
�51�.

The paper is organized as follows. Section II outlines the
algorithm we use to generate confined rcp states. Section III
shows how the total packing fraction, particle number den-
sity, and local order of confined rcp states change with con-
fining thickness and distance from the confining boundary.
Finally, Sec. IV provides a simple model that predicts the
packing fraction dependence with confinement.

II. METHOD

Our aim is to quantify how a confining boundary alters
the structure of rcp disks in 2D and spheres in 3D and, in
particular, to study how this depends on the narrowest di-
mension. This section presents our algorithm for 2D pack-
ings first and then briefly discusses differences for the 3D
algorithm.

In 2D, our system consists of a binary mixture of disks
containing an equal number N /2 large disks of diameter dl
and small disks of diameter ds with size ratio �=dl /ds=1.4.
For each configuration, disks are packed into a box of dimen-
sions Lx by Ly. For most simulations we discuss, there is a
periodic boundary condition along the x direction and two
fixed hard boundaries �walls� along the y direction; although
as discussed below, in some cases we consider periodic
boundaries in all directions or fixed boundaries in all direc-
tions.

Each configuration is generated using a method adapted
from Xu et al. �74�, which is an extension of a method pro-
posed by Clarke and Wiley �75�. This method is briefly sum-

marized in Fig. 1. Infinitesimal particles are placed at ran-
dom �76� in the system, gradually expanded and moved at
each step to prevent particles from overlapping. When a final
state is found such that particles can no longer be expanded
without necessitating overlap, the algorithm terminates. Near
the conclusion of the algorithm, we alternate between expan-
sion and contraction steps to accurately determine the state.

In particular, while the final state found is consistent with
hard particles �no overlaps allowed�, the algorithm uses a
soft potential at intermediate steps �74�, given by

V�rij� =
�

2
�1 − rij/dij�2��1 − rij/dij� , �1�

where rij is the center to center distance between two disk i
and j, � is a characteristic energy scale ��=1 for our simula-
tions�, dij = �di+dj� /2, and ��1−rij /dij� is the Heaviside
function, making V nonzero for rij �dij. Simulations begin
by randomly placing disks within a box of desired dimen-
sions and boundary conditions with the initial diameters cho-
sen such that �initial��rcp. In the initial state, particles do
not overlap and the total energy E=0.

Next, all disk diameters are slowly expanded subject to
the fixed size ratio �=1.4 and � changing by �� per itera-
tion; we start with ��=10−3. After each expansion step, we
check if any disks overlap by checking the condition
1−rij /dij 	�r=10−5 for each particle pair. Below this limit,
we assume the overlap is negligible. If any particles do over-
lap �E	0�, we use the nonlinear conjugate gradient method
�77� to decrease the total energy by adjusting the position of
disks so they no longer overlap �E=0�. In practice, one en-
ergy minimization step does not guarantee that we have
reached a minimum within the desired numerical precision.
Thus, this step can be repeated to further reduce the energy if
E	0. We judge that we have reached a nonzero local mini-

FIG. 1. A flow chart outlining our algorithm for computing rcp
configurations.
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mum if the condition ��E� / �2N���E=10−7 is found, where
��E� is the magnitude of the gradient of E. Physically speak-
ing, this is the average force per particle, and the threshold
value �10−7� leads to consistent results.

If we have such a state with E	0, this is not an rcp state
as particles overlap. Thus, we switch and now slowly con-
tract the particles until we find a state where particles again
no longer overlap �within the allowed tolerance�. At that
point, we once again begin expansion. Each time we switch
between expansion and contraction, we decrease �� by a
factor of 2. Thus, these alternating cycles allow us to find an
rcp state of nonoverlapping particles �within the specified
tolerance� and determine �rcp to high accuracy. We terminate
our algorithm when �����min=10−6. In practice, we have
tested a variety of values for the thresholds �r, �E, and ��min
and find that our values guarantee reproducible results as
well as reasonably fast computations. Our algorithm gives an
average packing fraction of �rcp=0.8420
0.0005 for 40
simulated rcp states, containing 10 000 particles with peri-
odic boundary conditions along both directions. Our value of
�rcp is in agreement with that found by Xu et al. �74�.

The above procedure is essentially the same as Ref. �74�;
we modify this to include the influence of the boundaries. To
add in the wall, we create image particles reflected about the
position of the wall; thus, particles interact with the wall
using the same potential �Eq. �1��.

Additionally, we wish to generate packings with prespeci-
fied values for the final confining height h=Ly /ds. �This al-
lows us to create multiple rcp configurations with the same
h.� We impose h by affinely scaling the system after each
step, so that the upper boundary is adjusted by Ly =hds and
each disk’s y coordinate is multiplied by the ratio Ly,i+1 /Ly,i,
where Ly,i and Ly,i+1 are the confining widths between two
consecutive iterations. Thus, while ds gradually increases
over the course of the simulation, Ly increases proportionally
so that the nondimensional ratio h is specified and constant.
Some examples of our final rcp states are shown in Fig. 2.

To ensure we will have no finite-size effects in the peri-
odic direction, we examined �rcp for different h and Lx and
found �rcp�h� to be independent of Lx for 3�h�30 if
Lx /ds	40. Thus, we have chosen N for each simulation to
guarantee Lx /ds�50.

In 3D, our system consists of a binary mixture of spheres,
containing an equal number N /2 large spheres of diameter

dl and small spheres of diameter ds with a size ratio
�=dl /ds=1.4. Spheres are packed into a box of dimensions
Lx by Ly by Lz, with periodic boundaries along the x and z
directions and a fixed hard boundary along the y direction.
Each configuration is generated using the same particle ex-
pansion and contraction method described above and the
same initial values for �� and the terminating conditions.
For each configuration Lx=Lz, h=Ly /ds, and N is chosen so
that Lx /ds	10. Our choice of Lx /ds	10 is not large enough
to avoid finite effects. However, in order to acquire the large
amount of data needed in a reasonable amount of time, we
intentionally choose a value of Lx /ds below the finite-size
threshold. Trends observed in the 2D analysis will be used to
support that any similar trends seen in 3D are real and not
the result of the finite periodic dimensions. Note that in 3D
we will show cases where h	Lx /ds, resulting in the confin-
ing direction being larger than the periodic direction, and this
may affect the structure of final configurations; however, we
will not draw significant conclusions from those data.

Overall, it is not known if this algorithm produces math-
ematically rigorously defined random close-packed states
�7,17,74,78�. However, the goal of this paper is to determine
empirically the properties of close-packed states in confine-
ment, and we are not attempting to extract mathematically
rigorous results. For example, we are not as interested in the
specific numerical values of �rcp that we obtain, but rather
the qualitative dependence on h. As noted in the introduction,
different computational and experimental methods for creat-
ing rcp systems have different outcomes, and so it is our
qualitative results we expect will have the most relevance.

Note that for the remainder of this paper, we will drop the
subscript rcp, and it should be understood that discussions of
� refer to the final state found in each simulation run �rcp�h�.

III. RESULTS

A. 2D systems

We begin by generating many 2D configurations with h
between 3-30 and computing the packing fraction for each,
as shown by the black curve in Fig. 3. This plot shows that
confinement lowers �, with the influence of the walls being
increasingly important at lower h. The lowering of � with
confinement is most likely due to structural changes in the
packing near the confining boundary. We know that any al-
teration in particle structure from a rcp state must be “near”
the wall because as h→�, we expect to recover a packing
fraction of �rcp, implying that in the infinite system the
“middle” of the sample is composed of an rcp region.
Extrapolating the data in Fig. 3 to h→�, we find
�h→�=�rcp=0.842, which is essentially a test of our method.
The extrapolation �red curve in Fig. 3� was carried out by
assuming that to first order ���h→�−C /h for large h,
where �h→�=�rcp �the bulk value for the rcp packing� and C
is a fitting parameter.

The data in Fig. 3 begin to deviate from the fit for h
6
and, furthermore, ��h� is not monotonic. While some of the
variability is simply noise due to the finite number of disks N
used in each simulation, some of the variability is real. The
inset in Fig. 3 shows a magnified view of the region

FIG. 2. �Color online� Illustrations of 2D and 3D configurations
generated using the algorithm described in Sec. II. �a� 2D configu-
ration for h=10. �b� 2D configuration with h=20. �c� 3D configu-
ration with h=5, where blue �dark gray� represents big particles and
green �light gray� represents small particles. �d� 3D configuration
with h=10.
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3�h�6. The vertical lines in this inset are located at spe-
cific values of h that can be expressed as the integer sums of
the two-particle diameters. For instance, the first vertical line
near the y axis is located at h=2ds+dl. These lines are placed
at some h values, where ��h� has notable spikes or plateaus.
These lines suggest that there exist special values of h, where
the confining thickness is the right width so that particles can
pack either much more efficiently or much less efficiently
than nearby values of h. Intriguingly, these special h values
do not appear to be as pronounced at all possible integer
sums, but instead only the selected few are drawn in the
figure. However, given the apparent noisy fluctuations �de-
spite averaging over a very large number of simulations�, we
cannot completely rule out that local maxima and minima
might also exist at other combinations of ds and dl. Some-
what surprisingly, we do not observe large peaks correspond-
ing to integer combinations of ��3 /2�ds or ��3 /s�dl, which
would suggest hexagonal packing, the easiest packing of
monodisperse disks in 2D; whereas, the observed peaks of
��h� suggest squarelike packing.

To measure structural changes in particle packing as a
result of confinement, we start by examining the variations in
the local number density � with distance y from the confin-
ing wall. We define � to be the average number of particles
per unit of area along the unconfined direction. For a given
location y, we count the number of particles in a region of
area Lx�y and divide by this area, choosing �y to be of a
size such that the results do not depend sensitively on the
choice but also so that we can get reasonably localized in-
formation. Figure 4 is a plot of ��y� for 100 configurations
averaged together at h=30. This plot shows oscillations in
particle density, which decay to a plateau. The oscillations
near the wall are indicative of particles layering in bands.
Above y�6ds, noise masks these oscillations. This supports
our interpretation that confinement modifies the structure
near the walls but not in the interior. Furthermore, the rapid-

ity of the decay to the plateau seen in Fig. 4 suggests that
confinement is only a slight perturbation to systems with
overall size h�6.

The details of the density profiles in Fig. 4 also suggest
how particles pack near the wall. The small particle density
�solid line� has an initial peak at y=0.5ds, indicating many
small particles in contact with the wall, as their centers are
one radius away from y=0. Likewise, the large particle den-
sity �dashed line� has its initial peak at y=0.7ds=0.5dl, indi-
cating that those particles are also in contact with the wall.
This is consistent with the pictures shown in Figs. 2�a� and
2�b�, where it is clear that particles pack closely against the
walls. Examining again the small particle number density in
Fig. 4 �solid line�, the secondary peaks occur at y=1.5ds and
y=1.9ds=0.5ds+1.0dl, which is to say either one small par-
ticle diameter or one large particle diameter further away
from the first density peak at y=0.5ds. This again is consis-
tent with particles packing diameter to diameter rather than
“nesting” into hexagonally packed regions. Similar results
are seen for the large particles �dashed line�, which have
secondary peaks at y=1.0ds+0.5dl and y=2.1ds=1.5dl.

To confirm that these density profile results apply for a
variety of thicknesses h, and more importantly to see how
these results are modified for very small h, we use an image
representation shown in Fig. 5. To create this image, density
distributions of different h are each separately rescaled to a
maximum value of 1. Every data point within each distribu-
tion is then made into a grayscale pixel indicating its relative
value; black is a relative value of 1, and white is a relative
value of 0. The vertical axis is the confining width and the
horizontal axis is the distance y from the bottom wall. Each
horizontal slice �constant h� is essentially the same type of
distribution shown in Fig. 4. The white space on the right
side of Fig. 5 arises because the distribution is only plotted
for the range 0�y�h /2. The distributions are symmetric
about y=h /2 and by averaging the distribution found for the
range 0�y�h /2 with the distribution found for the range
h /2�y�h, the statistics are doubled. The areas shown in
the insets are magnified views, where the full range
0�y�h is being shown.

In Fig. 5, there are vertical strips of dark areas, once again
indicating that particles are forming layers. The width of

FIG. 3. �Color online� The black curve is the average packing
fraction � found by averaging at least ten 2D configurations to-
gether for various confining widths h; recall that h has been nondi-
mensionalized by ds, the small particle diameter. The smooth red
curve �dark gray� is a fit using Eq. �5�, which finds �rcp=0.842 in
the limit h→�; the value for �rcp is indicated by the black dashed
line. The green �light gray� data points are ��h� computed for many
configurations with the confining wall replaced by a periodic
boundary. The inset is a magnified view of the region for h�6 to
better show the large variations within this range. The vertical lines
in the inset are located at “special” h values, where peaks and
plateaus appear.

FIG. 4. �Color online� A plot of the number density ��y� for 100
2D configurations at h=30 averaged together. The plot is con-
structed by treating the small and big particles separately and using
bins along the confining direction of width �y=0.1ds.
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these strips widens and the intensity lessens farther from the
wall. In each plot, the first vertical black strip is sharply
defined and located at one-particle radius, illustrating that
small and big particles are in contact with the wall. Finally,
the location and width of each layer remain essentially the
same for different h, suggesting that layering arises from a
constraint imposed by the closest boundary. Given that the
first layer of particles always packs against the wall, this
imposes a further constraint on how particles pack in the
nearby vicinity. The consistency in the location and width of
the second layer for all h demonstrates that the constraint of
the first layer always produces a similar packing in the sec-
ond layer, essentially independent of h. Continuing this ar-
gument, each layer imposes a weaker constraint on the for-
mation of a successive layer, allowing for the local packing
to approach rcp far from the wall.

In the magnified views of Fig. 5, the vertical dark lines
show the layering of particles induced by the left boundary
and the angled dark lines show the layering of particles in-
duced by the right boundary. We see that for small h, these
sets of lines overlap and intersect, meaning that there is a
strong influence from one boundary on the packing within
the layers produced by the other boundary. This may explain
the variations seen in ��h� for small h in Fig. 3. In particular,
it is clear that at certain values of h, the layers due to one
wall are coincident with the layers due to the other wall, and
this suggests why ��h� has a higher value for that particular
h. Given that the layer spacings correspond to integer com-
binations of ds and dl, the coincidence of layers from both
walls will correspond to integer combinations of ds and dl,
and this thus gives insight into the peak positions shown in
the inset of Fig. 3.

As described above, the influence of the walls diminishes
rapidly with distance y away from the wall. In particular, for
the local number density ��y�, we observe that the
asymptotic limit ��y→��=0.362 for the curves shown in
Fig. 4 is in agreement with the theoretical number density of
an rcp configuration �rcp=4�rcp /��1+��. To quantify the ap-
proach to the asymptotic limit, we define a length scale from
a spatially varying function f�y� using

� =
	 y�f�y� − f�y → ���2dy

	 �f�y� − f�y → ���2dy

. �2�

In this equation, f�y� is an arbitrary function, where the value
of � quantifies the weighting of f�y�. For simple exponential
decay f�y�=Ae�−y/���, Eq. �2� gives �=�� /2. Using
f�y�=��y�, we find �=0.85ds and �=0.72ds for the small
particle curve and big particle curve in Fig. 4, respectively,
suggesting that the transition from wall-influenced behavior
to bulk rcp packing happens extremely rapidly.

To further investigate the convergence of the local pack-
ing to rcp more closely, we analyze the local bond order
parameters �n, which for a disk with center of mass ri are
defined as

�n�ri� =
1

nb

�

j

eni��rij�
 . �3�

The sum is taken over all j particles that are neighbors of the
ith particle, ��rij� is the angle between the bond connecting
particles i and j and an arbitrary fixed reference axis, and nb
is the total number of i-j bonds �79�. �These are not physical
bonds but indicate that two particles are nearest neighbors,
where the definition of nearest neighbor is set by the first
minimum of the pair-correlation function.� The magnitude of
�n

2 is bounded between zero and one; the closer the magni-
tude of �n

2 is to 1, the closer the local arrangement of neigh-
boring particles is to an ideal n-sided polygon. Figures
6�a�–6�c� are drawings illustrating the concept of �n

2 using a
2D configuration with h=10. Particles with larger �n

2 are
drawn darker. These figures have no large clusters of dark
colored particles, demonstrating that there are no large crys-
talline domains �i.e., particles are randomly packed�.

For a highly ordered monodisperse packing, ��6
2
 would

be the most appropriate choice for measuring order because
of the ability for monodisperse packings to form hexagonal
packing. However, for a bidisperse packing with size ratio
�=1.4, the average number of neighbors a small particle will
have is 5.5 and the average number of neighbors big particles
will have is 6.5. Therefore, a bidisperse packing of this kind
will have a propensity to form local pentagonal, hexagonal,
and heptagonal packing, and to properly investigate how the
local packing varies we examine ��5

2
, ��6
2
, and ��7

2
. We
compute the average values ��5

2
, ��6
2
, and ��7

2
 for all con-
figurations, as a function of y, and averaging together all ��n

2

distributions for configurations with h�16 to improve statis-
tics. This averaging can be justified by considering that os-
cillations in ��y� in Fig. 4 for y /ds	10 are quite small.
Thus, this averaging improves our statistics for the range
0�y /ds�5, where the largest oscillations occur, without
skewing the data. In the end, nearly 10 000 configurations
are averaged together, producing the curves shown in Figs.
7�b�–7�d�. This figure shows the spatial variations of ��5

2
,
��6

2
, and ��7
2
 for small and big particles separately and both

particles combined. All curves show fluctuations that decay
with distance from the wall and show local order within and

FIG. 5. An image representation constructed for the purpose of
comparing 2D ��y� distributions at many different h. The intensities
have been logarithmically scaled. The vertical pixel width is 0.1 and
for the left plot the horizontal pixel width is 0.2 and for the right
plot the horizontal pixel width is 0.14.
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between layers. Figure 7�a� has been added so comparisons
between the locations of the oscillations in ��y� and ��n

2
�y�
can be made.

Each successive layer has less orientational order than the
previous layer with ��n

2
 eventually decaying to an
asymptotic limit. To characterize a length scale for these
curves, we compute � using Eq. �2� for each curve shown in
Figs. 7�b�–7�d�. From the nine curves, we find that the mean
value of �= �1.00
0.24�ds. The length scales found for
these curves are once again less than the largest particle di-
ameter. No striking difference is found between the different
order parameters or between the different particle sizes; spe-
cific values of � are given in the figure caption. �Note that
the asymptotic limits of all ��n

2
 plots are in agreement with
the average values found for 40 unconfined 10 000 particle
simulations averaged together, confirming that the local
packing converges to an rcp arrangement far from the walls.�

Next, we wish to distinguish the structural influence of the
flat wall from the finite-size effects. We perform simulations,
where the confining wall is replaced by a periodic boundary
with periodicity h; thus, particles cannot form layers. In this
case, the packing fraction still decreases as h is decreased, as
shown by the green curve �light gray� in Fig. 3, although the
effect is less striking than for the case with walls �black
curve�. A likely explanation for the decrease in � with con-
finement is the long-range structural correlations imposed
along the constricted direction; in other words, if there is a
particle located at �x ,y� that particle is mirrored at �x ,y−h�
and �x ,y+h� by the periodic boundary. We know from the
pair-correlation function �19,21� of rcp configurations that
structural correlations exist over distances of many particle

diameters, although of course these are weak at larger dis-
tances. Thus, the periodicity forces a deviation from the ideal
rcp packing that becomes more significant as h decreases. By
definition, rcp is the most random densely packed state and,
thus, any perturbations away from this state must have a
lower packing fractions. However, this is not nearly as sig-
nificant as the constraint imposed by the flat wall, as is clear
comparing the green �light gray� data and the black data in
Fig. 3.

B. 3D systems

We next consider 3D confined systems. We start by inves-
tigating ��h� shown as the black points in Fig. 8. As ob-
served in the 2D case, � is reduced as a result of confine-

2

2

2

FIG. 6. �Color online� Drawings illustrating the conceptual
meaning of �a� �5

2, �b� �6
2, and �c� �7

2. Darker colored particles have
neighbors that are packed more like an ideal regular n-sided poly-
gon as compared to lighter drawn particles. The configuration of
particles is the same for all panels and are drawn from a simulation
with h=10. Note in �b� that there are no large patches of high �6

2,
demonstrating that there are no large crystalline domains.

2
2

2

FIG. 7. �Color online� �a� A plot of the local number density
��y� for 2D configurations of big and small particles separately.
��b�–�d�� Plots of ��n

2
�y� for small �green/light gray� and big par-
ticles �blue/dark gray� separately and both sizes together �light
purple/medium gray� where �b� is ��5

2
, �c� is ��6
2
, and �d� is ��7

2
.
The length scales determined from these curves for small, large, and
both species are �5,s=1.2, �5,l=1.1, �5,b=1.4, �6,s=0.8, �6,l=0.9,
�6,b=0.8, �7,s=1.1, �7,l=0.7, and �7,b=1.0 �all in terms of ds�.

FIG. 8. �Color online� The black data points are the average
packing fractions of 3D configurations at various h. The red �dark
gray� curve is a fit to the model �5�. For each h, at least ten con-
figurations were averaged together.
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ment. However, unlike the 2D system, there does not appear
to be a series of “special values” of h that give rise to peaks
and plateaus other than a hump near h=3.75. The lack of
substructure may be due to the smaller size in x and z, in
contrast with the 2D simulations, which had large sizes in the
unconfined direction.

Next we investigate the local number density ��y� �the
average number of particles per unit area along the uncon-
fined directions� for h=25 shown in Fig. 9�a�. The data are
constructed by averaging together 100 configurations. The
curve shows fluctuations that decay with distance from the
wall, eventually reaching a plateau. Using Eq. �2�, we obtain
decay lengths �3D=0.77ds and 0.73ds for the small and large
particle curves, respectively. These length scales are similar
to the length scales obtained in the 2D case ��2D=0.85ds and
0.72ds for small and large particles�.

To compare all 3D ��y� distributions for different h, we
construct the image representation used to compare 2D con-
figurations in Fig. 5. The data for the 3D configurations are
shown in Fig. 10. Again there are dark vertical strips arising
from particles forming layers near the wall. Like in 2D, the
density approaches the “bulk” rcp value far from the wall.

In 2D, we also noted that the structure is modified near
the wall, as measured by the �n

2 order parameters. To inves-
tigate structural ordering in 3D, we use a local structural
parameter sensitive to ordering �80,81�. We start by defining

q̂i,6 =
1

njK
�

j

Y6m��ij,�ij� . �4�

In the above equation m= �−6, . . . ,0 , . . . ,6�, and thus q̂i,6 is a
13 element complex vector, which is assigned to every par-
ticle i in the system. The sum in Eq. �4� is taken over the j
nearest neighbors of the ith particle, nj is the total number of
neighbors, and K is a normalization constant so that
q̂i,6 · q̂i,6=1. For two particles i and j that are nearest neigh-
bors, Y6m��ij ,�ij� is the spherical harmonic associated with
the vector pointing from particle i to particle j, using the
angles �ij and �ij of this vector relative to a fixed axis. Next,
any two particles m and n are considered “ordered neigh-
bors” if q̂m,6 · q̂

n,6
* 	0.5 �80,81�. Finally, we quantify the local

order within the system by the number of ordered neighbors
Nb a particle has.

Figure 9�b� is a plot of the average number of ordered
neighbors particles have �Nb
 as a function of distance y
from the wall. In comparison with Fig. 9�a�, this plot shows
that local order is mostly seen within layers not between
layers. Also we see that �Nb
 converges to an asymptotic
value of �1.3, confirming that the system is disordered.
�Values of Nb�8 are considered crystalline �81�.� We use
Eq. �2� to characterize a length scale for the decay in �Nb
,
giving �=1.3ds. The asymptotic limit of �Nb
�y� in Fig. 9�b�
agrees with the average value of Nb found for 15 large simu-
lations with 2500 particles and periodic boundary conditions,
confirming that the local structure in the confined case con-
verges to the bulk rcp state far from the walls.

Our results show that in both 2D and 3D, confinement
induces changes in structural quantities near the walls, with a
decay toward the “bulk” values characterized by length
scales no larger than dl. The only prior work we are aware of
with related results are a computational study �40� and an
experimental study �41� of collections of monodisperse par-
ticles confined in a large silo. The simulation by Landry et al.
primarily focused on the force network within the silo. They
show one plot of the local packing fraction as a function of
distance from the silo wall. Similar to our results, this local
packing fraction showed fluctuations that decayed monotoni-
cally. In their paper, they state a decay length of �4dl; how-
ever, it appears that they drew this conclusion by estimating
the value by eye. Applying Eq. �2� to their data, we find � on
the order of dl, close to the value found in our simulations.
The experimental study by Seidler et al. reported on the local
bond orientational order parameter, which showed oscillation
that decayed with distance from the wall. They reported a
decay length of ��dl using an exponential fit. The length
scales from these two studies are slightly larger than those
found in our work.

IV. MODEL

Our results for ��h� can be understood with a simple
model incorporating an effective boundary layer and a bulk-

FIG. 9. �Color online� �a� A plot of ��y� for 3D configurations
for small and big particles separately. The plot is constructed using
bins of width �y=0.1ds along the confining directions. �b� A plot of
the average number of ordered bonds �Nb
�y�.

FIG. 10. An image representation comparing the number density
distributions of 3D configurations for many different h. Black pixels
represent a relative value of 1 and white represents a relative value
of 0. A grayscale is used to represent relative values between 0 and
1. The pixel widths are 0.1ds horizontally and 0.2 vertically.
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like region. This model is an extension of one proposed by
Verman and Banerjee �31� and Brown and Hawsley in 1946
�32�. In Fig. 11, we show a configuration of particles con-
fined between two plates and divided into two boundary lay-
ers and a bulk region. The model of Refs. �31,32� approxi-
mates the effect of the walls by assuming a lower effective
volume fraction �l to the boundary layers. The central region
is assumed to have a volume fraction �rcp, equal to the vol-
ume fraction for an infinite system. Of course, this model is
an oversimplification that coarse grains the density near the
walls, which in reality varies smoothly and nonmonotoni-
cally in space, as Sec. III demonstrates. Furthermore, this
model will not capture the nonmonotonic behavior of Figs. 3
and 8, but it should capture the overall trend with h. In the
original model of Refs. �31,32�, it was conjectured that the
thickness of the boundary layer is �L=1d for monotonic par-
ticles of diameter d. The experimental data they tested the
model with were too limited to carefully check this assump-
tion; here, we extend their model by allowing �L to be a free
parameter. �Clearly, our results, such as Fig. 7, confirm that
�L�1ds is a reasonable order of magnitude.�

Using this simple model, � can be approximated by the
weighted average �= h−2�L

h �rcp+ 2�L
h �l �in either 2D or 3D,

with different values of the parameters depending on the di-
mension�. Reducing this equation further, we obtain

� = �rcp −
C

h
, �5�

where we define the boundary packing parameter
C=2�L��rcp−�l�, which quantifies how the wall influences
the packing fraction near the boundary. Note that this is the
same form for ��h� obtained from considering a first-order
correction in terms of 1 /h and is the same empirical form
assumed by Scott �5�.

We investigate the merit of this model by fitting the data
to Eq. �5�, which only contains two fitting parameters �rcp
and C. The data in both Figs. 3 and 8 are fitted to Eq. �5�.
The fits are shown as the red lines in these earlier figures and
also in Fig. 12, where the data are plotted as functions of 1 /h
to better illustrate the success of this model. The fits give for
2D �rcp=0.844 and C=0.317 and for 3D �rcp=0.646 and
C=0.233. Both fits give values for �rcp that are slightly
larger, but not by much, than �rcp reported earlier in the
paper. In Fig. 12, it can be seen that the packing fraction for
large 1 /h dips significantly below the fitting line, due to the
fluctuations in ��h� for small h; this is responsible for the

overestimation on �rcp. When the data for both curves are
fitted for h�8 �1 /h�0.125�, the actual values for �rcp are
obtained. The dipping of the ��h� curve below the line for
large 1 /h is perhaps due to the layering each wall produces
affecting the layering produced by the opposite wall �see
Figs. 5 and 10�. Another possibility is that this reflects the
breakdown of the model when h�2�L. That is, when the
thickness of the sample is such that the two boundary layers
begin to overlap, the model would not be expected to work.

To provide further credence to the model, we also perform
2D rcp simulations with a fixed circular boundary or a fixed
square boundary. Figure 13 shows a plot of ��h� for both the
circular boundary �green points� and the square boundary
�blue points�. In analogy with our prior results, h is the wall-
to-wall distance: for the circular boundary, h is the diameter
normalized by ds, and for the square boundary h is the side
length L normalized by ds. As before with two parallel flat
boundaries, we see that � increases to an asymptotic limit.

FIG. 11. �Color online� Illustration of the model for ��h�. The
model breaks a configuration with confining width h into three re-
gions. The boundary layers are approximated to have a packing
fraction �l and persist a distance �L into the sample, and the middle
bulk region is approximated to have a packing fraction �rcp. These
three parameters are assumed to be h independent.

FIG. 12. �Color online� The upper black curve is a plot of
��1 /h� for 2D configurations and the red �dark gray� line going
through the curve is a fit from the model �Eq. �5��. Likewise, the
lower black curve is a plot of ��1 /h� for 3D configurations with the
red �dark gray� line going through the curve being another fit from
the model.

FIG. 13. �Color online� ��h� for disks confined within a circular
boundary or square boundary, as indicated. For the circular bound-
ary, h is defined as the system’s diameter normalized by ds, and for
the square boundary system h is defined as the system’s side length
normalized by ds. The red �light gray� curves are fits to the data
using our model. The image at the lower right is an rcp configura-
tion confined in a circular boundary with h=21. Small particles are
rendered as green �medium gray� and large particles are rendered as
blue �dark gray�.
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Note that the data are noisier for two reasons. First, given our
algorithm �Sec. II, for samples that are confined in all direc-
tions�, we can only choose the number of particles we start
with; we have no control over the final system size when the
particles jam. Due to random fluctuations, we can run the
simulations many times with the same number of particles
and each time find a different final value for h �and �rcp�.
This limits our ability to sample enough data at a particular h
to reduce the noise and/or look for nonmonotonic effects.
Second, there are many fewer particles in these simulations,
thus, reducing the statistics. Normally, this could be compen-
sated by increasing the number of simulation runs, but the
first problem �lack of precise control over h� frustrates this.

Adapting the model to a circular boundary with diameter
h or to a square boundary with side length h, we find that
both situations give

��h� = �rcp −
2C

h
+

2C�L

h2 , �6�

where C=2�L��rcp−�l� as before. The data in Fig. 13 are
fitted to this model, shown as the red lines. For the circular
boundary, the fit gives �rcp=0.846, C=0.371, and �L=1.51,
and for the square boundary the fit gives
�rcp=0.848, C=0.340, �L=1.14. These fits give �rcp values
close to the �rcp values reported earlier in the paper and C
values similar, but slightly different, than that found for one
fixed flat boundary. Interestingly, the fits give values of �L
commensurate to the � values previously computed, demon-
strating that the boundary produces a thin boundary layer of
about 1–2 characteristic particle sizes thick that is primarily
responsible for lowering the global packing fraction.

Finally, to demonstrate the quality of the fits we show a
plot of ��1 /h� in Fig. 14. In this figure, the red line is the fit
from Eq. �6�, while the black dashed line is a linear fit in
1 /h. Both fits are reasonable, and the data are not strong
enough to determine which is better. We thus note only that
the model suggests we should use the quadratic fit for these
cases and that the values of �L obtained are reasonable ones.

�L is a third parameter for the fit; fortunately, extending the
model to a 3D case, where all directions are confined, would
predict a cubic fit but without introducing a fourth parameter.

V. CONCLUSION

In this paper, we have shown how a confining boundary
alters the structure of random close packing by investigating
simulated rcp configurations confined between rigid walls in
2D and 3D. We find that confinement lowers the packing
fraction and induces heterogeneity in particle density, where
particles layer in bands near the wall. The structure of the
local packing decays from a more ordered packing near the
wall to a less ordered packing in the bulk. All measures of
local order and local density decay rapidly to their bulk val-
ues with characteristic length scales on the order of particle
diameters. Thus, the influence of the walls is rapidly forgot-
ten in the interior of the sample, with confinement having the
most notable effects when the confining dimension is quite
small, perhaps less than 10 particle diameters across.

The results are well fit by a three-parameter model dating
back to 1946 �31,32�, with our results suggesting that the
third parameter �an effective boundary layer thickness�
should be a free parameter rather than constrained. To first
order, this model suggests that the primary influence of the
boundary is quantified by one parameter C, which is the
product of a length scale and a volume fraction reduction.
This parameter, the boundary packing parameter, thus, quan-
tifies the overall influence of a boundary, near that boundary.
Since the model assumes nothing about shape, this model
should equally apply to other geometries as well.

These findings have implications for experiments investi-
gating the dynamics of densely packed confined systems
�i.e., colloidal suspensions or granular materials�. For ex-
ample, our work shows that for small h the packing fraction
has significant variations at small h �most clearly seen in 2D,
for example, Fig. 3�. For dense particulate suspensions with
���rcp, flow is already difficult. By choosing a value of h
with a local maximum in �rcp�h�, a suspension may be better
able to flow, as there will be more free volume available.
Likewise, a poor choice of h may lead to poor packing and
enhanced clogging. A microfluidic system with a tunable size
h may be able to vary the flow properties significantly with
small changes in h, but our work implies that control over h
needs to be fairly careful to observe these effects. Of course,
these effects will be obscured by polydispersity in many sys-
tems of practical interest; however, our work certainly has
implications for microfluidic flows of these sorts of materi-
als, once the minimum length scales approach the mean par-
ticle size.

Our work has additional implications for experiments on
confined glasses �50,51,65,67–72�. As mentioned in the in-
troduction, confinement changes the properties of glassy
samples, but it is unclear if this is due to finite-size effects or
due to interfacial influences from the confining boundaries
�73�. Our results show that dense packings have significant
structural changes near the flat walls, suggesting that indeed
interfacial influences on materials can be quite strong at very
short distances, assuming that the structural changes couple

FIG. 14. �Color online� ��1 /h� for disks confined within a cir-
cular boundary or square boundary, as indicated; the data are the
same as Fig. 13 along with the definitions of h. The red �light gray�
curves are fits to the data using our model. The black dashed lines
are linear fits to the data. The image at the upper right is an rcp
configuration confined in a square boundary with h=15.5. Small
particles are rendered as green �medium gray� and large particles
are rendered as blue �dark gray�.
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with dynamical behavior. Furthermore, the nonmonotonic
behavior of �rcp that we see suggests that experiments study-
ing confined glassy materials could see interesting nonmono-
tonic effects, if the sample thickness can be carefully con-
trolled.
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