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Experimental study of forces between quasi-two-
dimensional emulsion droplets near jamming

Kenneth W. Desmond,† Pearl J. Young, Dandan Chen‡ and Eric R. Weeks*

We experimentally study the jamming of quasi-two-dimensional emulsions. Our experiments consist of oil-

in-water emulsion droplets confined between two parallel plates. From the droplet outlines, we can

determine the forces between every droplet over a wide range of area fractions f. We study three

bidisperse samples that jam at area fractions fc z 0.86. Our data show that for f > fc, the contact

numbers and pressure have power-law dependence on f � fc in agreement with the critical scaling

found in numerical simulations. Furthermore, we see a link between the interparticle force law and the

exponent for the pressure scaling, supporting prior computational observations. We also observe linear-

like force chains (chains of large inter-droplet forces) that extend over 10 particle lengths, and examine

the origin of their linearity. We find that the relative orientation of large force segments are random

and that the tendency for force chains to be linear is not due to correlations in the direction of

neighboring large forces, but instead occurs because the directions are biased towards being linear to

balance the forces on each droplet.
1 Introduction

A liquid to amorphous-solid transition, also known as a
jamming transition, occurs in a wide variety of so materials
such as colloids, emulsions, foams, and sand. In general the
jamming transition is due to an increase in the particle
concentration f; the particles become sufficiently crowded so
that microscopic rearrangements are unable to occur when
external stresses are applied.1–3 At a critical fc the system jams
into a rigid structure, and many of the material properties are
known2,4 to scale with a power-law dependence on (f � fc).
While these somaterials have obvious differences, it has been
postulated that there are universal features of the jamming
transition that all these materials share in common such as
critical scaling and the emergence of force chains.

In all systems above the jamming point, particles press into
one another and deform. As the density increases, new contacts
form and particles deform more, increasing the pressure.
Interesting, both the average number of contacts z and the
pressure P show critical-like scaling relative to the jamming
point. In experiments and simulations, both 2D and 3D, the
average number of contacts scales as z � zc ¼ A(f � fc)

bz, where
zc and A depend on the dimension and bz ¼ 1/2 regardless of
dimension.5–11 Similarly, experiments and simulations also
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found power law scaling of P with exponent bP.5–8,10,12,13 The
simulations revealed that the value of bP depends on the details
on the interparticle force law.5–8 If this pressure scaling and
connection between bP and the interparticle force law extends to
experiments, then this would demonstrate a direct link between
the interaction of the constituent particles and the bulk prop-
erties of the sample, as the bulk modulus can be found from
P (f).

Another observed feature of jammed systems is the spatial
heterogeneity of the particle–particle contact forces. In experi-
ments and simulations, both 2D and 3D, the shape of the
probability distribution of forces is broad with an exponential
like tail.7,8,10,11,14–23 The largest forces tend to form chain struc-
tures that bear the majority of the load.14–20 These force chains
are responsible for providing rigidity of jammed materials to
external stresses and are related to many other bulk proper-
ties.14,15,24,25 In prior experiments on 3D emulsions, the structure
of the force chains was studied directly, where force chains
extended over 10 particle diameters with a persistence length of
3–4 particle diameters.17,21,22

There have been theoretical attempts to understand force
chains and the probability distribution of forces, such as the
q-model of Coppersmith et al.,26 directed-force chain networks
of Socolar's group,27 and simulations.28–30 While some of these
models successfully predict certain properties of the force
network, they cannot explain the physical origins of force
chains, and therefore, others took an ensemble approach to
describe the physical orgins, with different choices for ensem-
bles.22,31–37 The two basic assumptions of these ensemble
models are that the forces on a droplet must balance and the
This journal is ª The Royal Society of Chemistry 2013
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forces between neighboring droplets are uncorrelated. To
explain the structure of the force chains observed in 3D emul-
sion studies, Brujić et al.21,22 and Zhou et al.17,34 proposed an
ensemble model at the single particle scale that provides an
accurate physical description for the origin of force chains. This
model has not been applied to 2D systems.

In this paper, we introduce a new experimental system to
study the universal nature of the jamming transition. Our
system consist of quasi-2D so deformable droplets with no
static friction forces. In the Appendix, we describe our method
to determine the forces between droplets in contact to within
16%, signicantly better than prior studies of foams11 and
comparable to photoelastic disks.16 Using our experimental
model system, we nd power-law scaling for the coordination
number and pressure (Section 4.2), we observe a relationship
between the interparticle force law and bP (Section 4.2), and see
a distribution of contact forces similar to prior work (Section
4.3). Further, we conrm the assumptions of the Brujić–Zhou
model apply to our data and that the model well-describes our
2D data (Section 4.4). This work provides an in depth study
comparing data from our experimental model system to other
numerical simulations, theory, and experimental systems, thus
furthering our understanding of the jamming transition and
supporting the applicability of ideas of jamming to a new
system.

2 Experimental method

We produce emulsions using a standard co-ow micro-uidic
technique,38 see Fig. 1(a). The inner tube diameter is �35 mm
and the outer tube diameter is �500 mm. The continuous phase
is amixture of water and the commercial soap “Fairy”, and ows
through the outer tube at a rate of �1 mL min�1. The droplets
are mineral oil, which ows through the inner tube at a rate of
�0.5 mL h�1. Slight variations of these parameters let us
produce monodisperse droplets with radii in the range of
80–170 mm; any given batch of droplets has a polydispersity of
Fig. 1 (a) A schematic of our co-flow apparatus. Oil is pumped at a constant rate
through a micropipet centered within a capillary tube of larger diameter. Around
the inner micropipet, a 5 g mL�1 water/Fairy soap mixture is pumped through the
capillary tube, and as oil leaves the micropipet it forms spherical droplets that
repeatedly break off with the same diameter. (b) A schematic of our sample
chamber where emulsion droplets are confined to a 2D plane by two microscope
slides separated by either a �100 mm spacer (transparency film) or �180 mm
spacer (glass coverslip). (c) Sketch showing a side view of droplets in the sample
chamber. As the diameters of the droplets are always larger than the gap thick-
ness between the two glass plates, the droplets take on pancake-like shape.

This journal is ª The Royal Society of Chemistry 2013
less than 4%. Mixing together two monodisperse batches lets us
produce bidisperse samples with whatever size ratio and
number ratio desired.

Our sample chamber is designed to create a system of quasi-
2D emulsion droplets, analogous to 2D granular systems of
photoelastic disks16 but without static friction. The chamber
consists of two microscope glass slides of dimensions 25 mm �
75 mm (Corning) separated by a �100 mm spacer (transparency
lm) or a �180 mm spacer (Corning no. 1 glass coverslip) glued
along the two longer edges; see Fig. 1(b). The sample chamber
thickness is tuned so that the droplets are deformed into
pancake shapes, with aspect ratio (diameter/height) ranging
from 1.6 to 3.0; see Fig. 12.

Aer the sample chambers are lled, they are placed on a
microscope for imaging with either a 1.6� or 5� objective lens.
The droplets are allowed to equilibrate their positions; we only
consider static samples. Our camera takes 2200 � 1800 pixel2

images. We overlap images from different areas to construct a
single large eld of view image on the order of 10 000 � 50 000
pixel2 containing between 1000 to 5000 droplets depending on
the droplet sizes. We image every droplet (wall-to-wall) and only
analyze droplets more than�4 diameters away from the nearest
wall to avoid wall effects.39
3 Empirical force law

We wish to use the droplet images (such as those shown in
Fig. 2) to determine the forces droplets exert on each other. An
isolated droplet is circular with 2D radius r0 due to surface
tension. Droplets feeling forces from other droplets are
deformed. Our goal is not to know the exact form of the force
Fig. 2 Illustration of our experiment. Oil droplets rise to the top of the sample
chamber due to buoyancy. At the bottom of the droplet “pile,” droplets barely
touch and are not deformed. At the top, droplets are compressed due to the
buoyant weight of the droplets below them. This lets us study the sample from
the jamming area fraction on up, and also provides a means to calibrate the forces
as described in the Appendix. The scale bar is 200 mm, and the images have area
fractions f ¼ 0.88, 0.92, and 0.96.

Soft Matter, 2013, 9, 3424–3436 | 3425
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Table 1 This table provides parameters characterizing the droplets in our 3
bidisperse samples. The first column s ¼ r (big)0 /r (small)

0 is the size ratio and the
second column is the number ratio nr¼N(big)/N(small). The polydispersity in droplet
sizes for the big droplets is indicated by poly(big) and for the small droplets by
poly(small). The polydispersity is defined as the standard deviation in droplet sizes
normalized by the mean size. Our uncertainties are �2 mm in r0, �0.1% in s, and
<0.1% in polydispersity. Since we image every single droplet there is no
measurement error in nr

s nr r(big)0 poly(big) r(small)
0 poly(small)

1.25 0.684 127 mm 3.4% 102 mm 3.1%
1.42 0.849 130 mm 3.0% 91.8 mm 3.4%
1.52 0.806 137 mm 3.3% 90.1 mm 3.1%

Fig. 3 Close up view of regions within our three bidisperse samples. The scale
bar in each image is 250 mm. (a) is an image for our sample with size ratio 1.25 at
f ¼ 0.89. (b) is an image for our sample with size ratio 1.42 at f ¼ 0.90. (c) is an
image for our sample with size ratio 1.52 at f ¼ 0.90.
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law governing inter-droplet forces. Rather, we need to know
these forces to within our experimental error. The details of our
approach are given in the Appendix; we briey summarize our
method here.

By tilting the sample to an angle of 28� as shown in Fig. 2, we
exploit the known buoyant forces on the droplets, which are
O(10�3 mN) per droplet. Droplets further up the incline feel
larger forces and deform more because they must support the
buoyant weight of the droplets below. This can be seen in Fig. 2,
where droplets further up the incline are more compressed.

The key parameters to determine the forces are the contact
length Dl of the interface shared between the two droplets, and
the modied radius of curvature r of each droplet deduced from
the perimeters of the droplets where they are not contacting
another droplet. Laplace's law relates the interface curvature to
the pressure difference between the interior and exterior of a
droplet; in 3D this relation is DP ¼ g/r with g being the surface
tension. From this, it is clear that deforming a droplet
(increasing its internal pressure) results in r < r0. Likewise, it is
clear from Fig. 2 that Dl is larger for droplets feeling larger
forces (droplets farther up the incline).

To nd a force law from our data, we use numeric methods
to nd a force law f (Dl, r) that best satises what we know about
the data: (1) the net force on any droplet is zero (as the droplets
are motionless), (2) the components of the forces in the y
direction balance the buoyant weight of each droplet, and (3)
the forces acting between two touching droplets are equal and
opposite. Aer some work, we nd for two droplets i and j in
contact that the best functional form is

F ¼ a1(R0L/rij) + a2(R0L/rij)
2, (1)

where 1/rij ¼ 1/ri + 1/rj, R0 is the mean 3D droplet radius prior to
putting the sample into the quasi-2D chamber, and a1 and a2

are constants that depend on the oil–water–surfactant details.
For our samples, a1 ¼ 4.25 mN mm�1 and a2 ¼ 4.12 mN mm�2.
The forces we observe in the experiment range from 0–0.5 mN,
several hundred times larger than the buoyant weight of an
individual droplet, which makes sense given that the inter-
droplet forces at high f are due to the accumulated pressure
from the buoyant forces of the many droplets below. Intrigu-
ingly, we nd that the force law does not depend on the gap
thickness of the sample chamber. We stress that eqn (1) is an
empirical deduction and is only approximate. The data pre-
sented in the next section are from images taken with the 1.6�
objective lens and the forces obtained have a random uncer-
tainty of 16%. For a more detailed discussion on obtaining this
force law and the uncertainty, see the Appendix.
4 Jamming of binary packings

We will investigate the jamming transition and force networks
in disordered bidisperse packings using the setup shown in
Fig. 2. By allowing the sample to equilibrate in this chamber, we
set up a gentle gradient in area fraction ranging from just barely
jammed at the bottom of the incline to well-jammed near the
top. This lets us study the properties of the packing over this full
3426 | Soft Matter, 2013, 9, 3424–3436
range of area fractions. For the analysis in this section, we only
consider droplets between 5 and 50 droplet diameters up the
incline, unless otherwise specied. This region corresponds to
an area fraction f ranging from 0.89–0.96. We study three
different samples with different size ratios, as shown in Fig. 3.
Details of each sample are given in Table 1. We note that
moving up from the bottom of the droplet pile, within in the
rst ve particle diameters the area fraction increases above the
jamming point by 0.03 (see next section for jamming point), and
it is plausible our results may differ from theoretical predictions
valid for f / fc.
4.1 Identifying jamming area fraction fc

We start by identifying the jamming area fraction fc for each
dataset. To determine the jamming point, we calculate the area
fraction with distance up the incline directly from our images
of the droplets in three steps. First, using the centers and radii
of the droplets we compute the radical Voronoi cells40,41 for
each droplet. The radical Voronoi tessellation divides space
into polygons, one per droplet, taking into account each drop-
let's size so that each droplet is fully contained within its own
polygon. Second, we determine the area Av of each Voronoi cell
and the area Ad of each droplet. Third, the area fraction f(y) at
a position y is computed as f(y) ¼ P

kAd,k/
P

kAv,k, where k
indexes all droplets with a center of mass within y � Dy/2 and
y + Dy/2. For this step, all the droplets are examined, down to
nearly y ¼ 0, except for the droplets at y z 0 where the Voronoi
cell is poorly dened. We choose Dy ¼ 6hr0i where hr0i is the
mean droplet radius (which depends on the size ratio and
number ratio, see Table 1 for details). This value of Dy gives
This journal is ª The Royal Society of Chemistry 2013
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Fig. 4 (a) Scatter plot of coordination number against ftheory � fc. All data were
fitted together to z � zc ¼ A(f � fc)

bz, where the fit is shown as the black dashed
line with fit parameters zc ¼ 4.2, A ¼ 3.2, and bz ¼ 0.4. Fitting the different
datasets separately gives slightly different fit values, listed in Table 2. Inset of (a):
scatter plot of coordination number and experimental area fraction f. The dashed
line is a linear fit to all the data with slope 9.6 � 0.1 and zc ¼ 4.82 � 0.02. The
different value of zc between (a) and the inset to (a) is due to the different
extrapolation function. (b) A scatter plot between pressure and ftheory � fc. The
pressure has been scaled by c ¼ 1;

ffiffiffiffiffiffi
10

p
, and 10 for the s ¼ 1.25, 1.42, and 1.52

data respectively. Each dataset is fitted to P ¼ A(ftheory� fc)
bP, shown as the black

dashed lines. The fit values are given in Table 2. Inset of (b): scatter plot of pressure
and experimental area fraction.

Table 2 The fitting parameters for the power law fits to the data for each size
ratio s. Note that simulations8 found bP ¼ bf; see text for a discussion. The
uncertainties in the fit values are obtained by computing the standard error in
each fitting parameter

z � zc ¼ Az(ftheory � fc)
bz

s Az bz zc

1.25 3.2 � 0.6 0.4 � 0.2 4.3 � 0.3
1.42 3.3 � 0.6 0.4 � 0.2 4.3 � 0.3
1.52 3.2 � 0.7 0.3 � 0.2 4.0 � 0.4

P ¼ AP(ftheory � fc)
bP

s AP [mN mm�1] bP

1.25 19 � 1 1.41 � 0.03
1.42 15 � 1 1.30 � 0.03
1.52 13 � 2 1.26 � 0.07

fij ¼ F0(drij/dij)
bf

s F0 [mN] bf

1.25 2.3 � 0.2 1.27 � 0.03
1.42 2.4 � 0.1 1.19 � 0.02
1.52 2.0 � 0.1 1.15 � 0.03
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roughly 150 droplets per y sampled. Within this window of Dy,
Df ¼ (vf/vy)Dy z 0.007. From f(y) we can obtain the jamming
point fc by extrapolating the value of f to y ¼ 0, where y ¼ 0 is
dened as the bottom of the droplet pile. We can treat the
y ¼ 0 point in our data as the jamming point since the forces
between droplets at y ¼ 0 are nearly zero. For the three data-
sets, the extrapolation is done by tting f(y) to a power law
[f(y) ¼ fc + ayb] giving fc ¼ 0.855 � 0.005, 0.861 � 0.005, and
0.858 � 0.008 for the data with size ratio s ¼ 1.25, 1.42, and
1.52, respectively. We chose to use f(y) ¼ fc + ayb since f � fc

vs. y appears fairly linear on a log–log plot. In simulations on
frictionless disks and experiments on 2D foams it has been
reported that fc � 0.84 for bidisperse systems,7,11,39 which is a
little lower than the values we found.

Our measured area fraction depends on where we dene the
outer perimeter of a droplet. As seen in Fig. 3, the droplets have
thick black outlines. We look at the outer edge of each outline,
and dene the perimeter as the pixel location where the
intensity is halfway between the white color outside the droplet,
and the black color in the darkest part of the outline. The
transition from black to white occurs over a distance of 2–3
pixels, and so we judge that we have a systematic uncertainty in
the area fraction of roughly 1% due to the determination of the
perimeter position. Since this is systematic, the distance to the
jamming point (f � fc) is insensitive to this error and therefore
in most of our results we focus on f � fc.

4.2 Critical scaling

The rst critical scaling we investigate is the coordination
number, the mean number of contacts each droplet has. Prior
numerical studies of jamming in frictionless systems found that
the coordination number z obeys a power law scaling of the
form z� zc ¼ A(f� fc)

bz, where A� 3.5, zc ¼ 4, and bz¼ 1/2.5–7 It
has been observed that A has a slight dependence on the force
law and polydispersity, but zc ¼ 4 and b ¼ 1/2 are independent
of the force law and polydispersity. Katgert and van Hecke11

found for a 2D bidisperse foam with size ratio 1.5 a critical
scaling with A ¼ 4.02 � 0.02 and bz ¼ 0.50 � 0.02 while xing
zc ¼ 4. The critical point zc has been interpreted as the isostatic
point ziso (minimum number of contacts necessary for a
mechanically stable packing). For 2D, ziso ¼ 4, in agreement
with zc found in prior work.

To compare experimental data and simulation data, the
experimental area fraction needs to be converted into a theo-
retical area fraction.11 This is because the simulated particles
are allowed to overlap (thus diminishing the total area they take
up at large f) while our experimental droplets always occupy the
same total area. We convert our experimental f values to ftheory

using the method of Katgert and van Hecke.11 From our data we
determine z and ftheory at various points along the incline. The
results are plotted relative to the jamming point in Fig. 4(a), and
show power-law scaling. Fitting the each dataset to the theo-
retical scaling law, z� zc¼ A(f� fc)

bz, we obtain values for A, zc,
and bz which are reported in Table 2. Our values of A z 3.2 are
close to Az 3.5 found in a numerical study by O'Hern et al.7 for
particles with size ratio 1.4. The tted values for zc are within the
uncertainty of the previously found value of 4.5–7,11 However, our
This journal is ª The Royal Society of Chemistry 2013 Soft Matter, 2013, 9, 3424–3436 | 3427
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droplets have a slight attraction which may result in a slightly
tighter packing of droplets at fc with a coordination number zc
> 4. Given our uncertainties of zc, our data are consistent with
both zc ¼ 4 and zc > 4. Finally, for each packing, the exponent bz
z 0.4 agrees with the prior ndings (b ¼ 0.5) to within our
uncertainty, although we have a fairly large uncertainty in our
exponents. Interestingly, in 2D photoelastic disk experiments,
they found z � zc ¼ A(f � fc)

bz with bz ¼ 0.53 � 0.03 without
needing to convert their experimental f to ftheory,10 but A � 25
for that study which is considerably different from our results.
In their work, they were limited to area fractions close to fc due
to the difficulty of compressing their particles to high area
fractions, while our data (and those of ref. 11) extend over a
larger range of f.

The second critical scaling we investigate is the dependence
of pressure P with distance to the jamming point. Simulations
of 2D particles found P ¼ A(ftheory � fc)

bP, where A and bP

depend on the form of the force law. In the numerical study by
O'Hern et al.,8 they used frictionless disks that interacted via the
force law fij ¼ F0(drij/dij)

bf, where F0 is a scale, drij is the overlap
between two particles in contact, and dij is the sum of the radii
of the particles in contact. They found that bP ¼ bf. It is certainly
possible that for other force laws, the scaling of pressure with (f
� fc) could be different. In particular, in our experiment, the
force between two droplets is not a unique function of drij but
rather depends on the droplet perimeters which are inuenced
by all of their neighbors. In 2D photoelastic disk experiments bP
was found to be 1.1.10 No prior experimental 2D studies have
examined the scaling of P for systems without static friction.

For our experiment, we compute the local pressure of our
sample by rst locating a set of droplets k within a window y �
Dy/2 and y + Dy/2. For these k droplets the pressure is P ¼P

i
P

j>iFijrij/
P

kAk,v, where i and j index all contacts on the k
droplets and

P
kAk,v is the sum of the Voronoi areas of all k
Fig. 5 The average force between droplets in contact plotted against the
amount of compression between the droplets. The average force has been scaled
by a prefactor of c ¼ 1;

ffiffiffiffiffiffi
10

p
, and 10 for the s ¼ 1.25, 1.42, and 1.52 data

respectively. Each data is fitted to hfiji ¼ F0(drij/dij)
bf and the fits are shown as the

black dashed lines. The fit values are given in Table 2. Note that this data is an
effective force law, not the true force law: for a given drij/dij, different droplet pairs
may experience different contact forces. To illustrate this, we have added error
bars to the plot, where the error bars represent one standard deviation in the
spread of measured contact forces at each drij/dij.

3428 | Soft Matter, 2013, 9, 3424–3436
droplets.8,42 In this formula, Fij and rij are both taken to be
positive scalars. Here we use Dy ¼ 5r0. In Fig. 4(b) we plot the
pressure for all three packings against ftheory� fc. These results
show power-law scaling. The dashed lines are the t to P ¼
A(ftheory � fc)

bP with the t values shown in Table 2. In partic-
ular, we nd bP values between 1.26 and 1.41, larger than bP ¼
1.1 found for photoelastic disks.10

To compare with the simulations of O'Hern et al.,8 we wish to
approximate how forces between our droplets depend on their
separations drij. For each observed dij we nd the true force fij
from our force law.We average all of the observations over small
windows in dij to nd an effective average force law as a function
of dij, plotted in Fig. 5. The error bars emphasize that Fig. 5 is
only an average trend rather than the true force law. Intrigu-
ingly, the averaged data follow a power law: we t each data to
h fiji ¼ F0(drij/dij)

bf to obtain the power law exponent bf. The ts
are shown as the black dashed lines in the gure, with t values
listed in Table 2.

Our ts give bf < bP in contrast to the results of O'Hern et al.8

where bP ¼ bf. This equality was found for systems close to the
jamming area fraction. The exponent for the pressure, bP,
relates to how droplets are compacted with increasing f � fc.9

Close to fc, when f is slightly increased, droplets can avoid
signicant compression by rearranging and forming more
contacts, however, at larger f, droplets cannot form many new
contacts and must instead undergo larger compression.
Therefore, at larger area fractions, the pressure increases more
rapidly with f � fc than it does near the jamming point. This
argument predicts bP > bf, in agreement with our data which
extends far from fc. While the uncertainty in each force
measurement is 16%, this uncertainty is unlikely to signi-
cantly affect the pressure results, as the data of Fig. 4 and 5 are
averages over many forces.
4.3 Force distribution

We now consider the distribution of contact forces for each
packing at different area fractions. Like before, we sample the
contacts forces at various points up the incline using a window
of y � Dy/2 and y + Dy/2. However, we need many contacts to
obtain a good distribution of contact forces, and therefore, we
use Dy ¼ 30r0. (Over this range of Dy and for droplets at least 10
diameters up the incline, Df¼ (vf/vy)Dy ¼ 0.025.) This window
size gives roughly 2500 contacts for each y sampled. In Fig. 6(a),
the circle data points show the distribution of contact forces
normalized by themean contact force at locations with f� fc as
indicated; all the data are for the s ¼ 1.25 packing. In all our
data most forces are near or less than the mean force hfi and
that the maximum force is about 3hfi, with a somewhat expo-
nential tail. The shape and magnitude of all the curves are
roughly the same. All curves show a dip at small forces. The
triangle symbols in Fig. 6(a) show the distribution of normal
forces from Majmudar and Behringer,16 an experiment using
frictional 2D photoelastic disks. In their experiment, the parti-
cles were isotropically compressed to an area fraction �0.016
above the critical area fraction. Our results look essentially the
same as theirs, despite the differences in experimental systems.
This journal is ª The Royal Society of Chemistry 2013
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Fig. 6 (a) Distribution of contact forces relative to the mean contact force at
different f for the s ¼ 1.25 packing. The mean force is hfi ¼ 0.011 mN, 0.045 mN,
and 0.13 mN for the f � fc ¼ 0.024, 0.062, and 0.090 data respectively. The solid
triangles are data from a 2D photoelastic disk experiment at f � fc � 0.016 from
Majmudar and Behringer.16 The solid curves are q-model fits to the data of the
form P � (f/hfi)N�1exp(�Nf/hfi). The fits gave N ¼ 2.19, 3.76, and 4.21 for the f �
fc ¼ 0.024, 0.062, and 0.090 data respectively. The dashed black curve is the
prediction of the force network ensemble. (b) The standard deviation of P(f/hfi)
for each packing at different f. The standard deviation of the Majmudar and
Behringer data is 0.52.
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These distributions are also similar to simulations and experi-
ments on 2D and 3D frictionless systems of foams and emul-
sions.7,11,17,21 This suggest that the distribution of forces is a
fairly universal property of all jammed systems.

Additionally, we t the force distributions to the q-model26 of
the form P � ( f/h fi)N�1exp(�Nf /hfi), where N is the number of
neighbors a transmitted load on a droplet is divided. Treating
one neighbor as the source for a transmitted load, then N + 1
represents the average number of neighbors. The ts to the
q-model are shown in the gure as the solid lines. The ts gave
N + 1 ¼ 3.19, 4.76, and 5.21 for the f � fc ¼ 0.024, 0.062, and
0.090 data respectively, smaller than the measured coordina-
tion numbers 4.9, 5.4, and 5.7 respectively. The q-model ts the
tail of the P( f) data fairly well, but does not capture the data at
smaller forces, as the model predicts a distribution that goes to
zero at zero force, while the data shows a distribution that
approaches a nite value at zero force. In addition to the
q-model, we also compare our data to the force network
ensemble,31 which numerically predicts a force distribution at
the jamming point from similar ensemble arguments discussed
in Section 4.4. The force network ensemble predicted by
Snoeijer et al.31 is shown as the dashed black line. We see in the
gure that this model agrees fairly well with our data closest to
This journal is ª The Royal Society of Chemistry 2013
the jamming point. It captures the distribution at smaller forces
better than the q-model, but our data are not clear enough to
distinguish the two models at larger forces.

As observed by Katgert and van Hecke,11 our force distribu-
tions slightly narrow with increasing area fraction in Fig. 6(a).
To quantify this, we plot the standard deviation of each force
distribution in Fig. 6(b). For the s¼ 1.25 and s¼ 1.42 packings,
the width of the force distributions decreases quickly above the
jamming point and then saturates to a constant width of �0.5.
The s ¼ 1.52 packing has a broader distribution of forces at
larger f � fc compared to the other two packings, and the
decrease in the width as f� fc increases is more subtle. Overall,
our results are qualitatively in agreement with ref. 11 although
they did not compute the standard deviations. It is possible that
measurement errors in our forces have a dependence on f, as
discussed in the Appendix, and that this could affect the
dependence of the standard deviation on f. However, the errors
are no worse than 16%, much less than the width of the
distributions for any f, and so a possible f-dependence of the
errors cannot account for the decrease in width seen in Fig. 6(b).
4.4 Force chains

In this section we consider various statistical measurements on
the randomness of the force chain network, and then we
compare predictions of the Brujić–Zhou model17,21,22,34 to our
data. When analyzing data in this section we consider all
droplets and contacts between 40 # y/2r0 # 80, and over this
range f increases from 0.93 to 0.96. We nd that all of the
properties discussed below do not depend on f at larger area
fractions, and so considering this larger range of f gives us
better statistics.

To start, we dene a force segment to belong to a force chain
if it is one of the two largest forces on both droplets joined by
the force segment. Under this denition, each droplet can only
have a maximum of two force segments that belong to a force
chain, and therefore, our denition does not allow for force
chain branching or merging, which will simplify the analysis
below. Note that even droplets with small forces can participate
in force chains, given that the denition only requires the force
segments to be large for the given droplet and its contacting
neighbors. Fig. 7 shows force chains using our denition. These
chains are fairly linear and vary in length from 1 tomore than 10
force segments. Our samples are formed by slow compaction
due to buoyant forces, which may introduce an anisotropy in
the force chain network.16,25,43 Indeed, we nd a slight bias for
force chain segments to be orientated up the incline.

Given that force chains form linear like structures and that
there is a slight anisotropy for force chains to align along the
incline we may expect there to be correlations in the orientation
of neighboring force chain segments. To quantify such a
correlation we dene two relative angles q1 and q2 between
joining force segments, where the denition of q1 and q2 are
shown in Fig. 8. We compute the Pearson correlation coefficient
C ¼ cov(q1,q2)/sq

2, where cov(q1,q2) is the covariance of q1 and q2

and sq is the standard deviation of q. We nd that for all f, C is
zero or nearly zero (at most C ¼ 0.2), indicating no correlation.
Soft Matter, 2013, 9, 3424–3436 | 3429
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Fig. 8 Definitions of the angles q1 and q2 between joining force segment. In the
sketch both q1 (clockwise to extended line) and q2 (counter clockwise to extended
line) are positive. If there is a correlation in orientation that tends to make force
chains linear, then the correlation between q1 and q2 is positive.

Fig. 9 (a) Distribution of q for each packing, where both q1 and q2 are treated as
a single variable q. The red solid line is the distribution for the s ¼ 1.25 packing,
the green dashed line is the distribution for the s ¼ 1.42 packing, and the blue
dashed-dot line is the distribution for the s ¼ 1.52 packing. (b–d) Comparisons
between the experimental distributions and the predictions of the Brujić–Zhou
model, for size ratios (b) s ¼ 1.25, (c) s ¼ 1.42, and (d) s ¼ 1.52.

Fig. 7 This image shows only the forces belonging to a force chain within a
region of the s ¼ 1.25 sample. On average, the forces are larger further up the
image because the sample is inclined, and this can be observed in the image by
the increasing redness of the force segments at the top.
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This agrees with prior work on 3D emulsions.17,21 Thus, the
apparent linearity of force chains seen in some locations of
Fig. 7 is not due to correlations in the relative direction of
neighboring segments that would keep the chain straight.

To further explore the tendency for force chains to be linear,
we consider the distribution of q1, where we drop the subscript 1
as we are only focusing on two force segments at a time rather
than three. In Fig. 9(a) we plot the distribution in q for all three
packings. The distribution shows that most force chain
segments form at an angle |q| < 60�. Thus, force segments tend
to form a linear chain not because their orientations are
correlated, but simply because it's more probable that they are
oriented at small angles relative to each other. Using our P(q)
data, we determine the persistence lengths l using the standard
denition of persistence length for polymer chains.

We nd l ¼ 4.4hr0i, 4.8hr0i, and 3.8hr0i for the s ¼ 1.25, 1.42,
and 1.52 data. These are the distances beyond which the force
chain has “forgotten” its original direction. In analyzing the
distributions similar to P(q) for 3D emulsions, Zhou and Din-
smore34 found a persistence length slightly larger around l � 6–
8hr0i.

To further consider the orientations of force segments in force
chains, we consider a model proposed by Brujíc et al.21,22 and
extended by Zhou et al.17,34 The Brujíc–Zhoumodel is amethod for
generating ensembles of local particle congurations (a central
particle and contacting rst neighbors) and the forces acting on a
3430 | Soft Matter, 2013, 9, 3424–3436
central particle by its rst neighbors. Each local conguration is
generated by randomly placing zi contacting neighbors such that
any two neighboring particles do not overlap. Next, the contact
forces between the central particle and zi � 2 neighboring parti-
cles are chosen at random from a distribution P(f), leaving two
unknown contact forces. We choose P(f) to match our experi-
mentally measured distributions (see Fig. 6). By invoking force
balance, the two remaining contact forces are found algebraically.
Once a sufficient number of local congurations are generated,
the distribution of force chain orientations can be studied. The
basic assumptions of this model are force balance, randomness
in the magnitude of forces, and randomness in the orientation of
forces. For our data the rst assumption applies because the
system is in mechanical equilibrium and above we have shown
that the other two assumption reasonably apply.

One issue in using the Brujíc–Zhou model to predict P(q) is
that themodel only gives the forces between a central droplet and
its rst neighbors. To dene a force chain segment we also need
to know all the forces acting on each rst neighbor as well. We
therefore extend their model by generating additional forces on
the neighboring droplets in exactly the same way (constrained by
the forces already chosen for the central droplet). This lets us
apply our force chain denition given above, which requires that
force segments be among the largest two forces on both droplets
the force acts between. We repeat this extended Brujíc–Zhou
algorithm many times to compile data from all cases where the
algorithm gives an instance of two valid force segments so that
we can determine q1. To make the inputs into the model as
consistent as possible with our experimental data, instead of
randomly generating local congurations, we randomly select
local congurations from our experimental data.

Fig. 9(b)–(d) compares P(q) measured in our experiments
(black solid curves) with the predictions of the model (red dot-
dashed curves). The model is in good agreement with the
This journal is ª The Royal Society of Chemistry 2013
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Fig. 10 Distribution of the number of force segments making up distinct force
chains. The data points are experimental values and the dashed lines are fits to
the data of the form P(n) ¼ (1 � p)pn, where p is found to be 0.722, 0.758, and
0.717 for the s ¼ 1.25, 1.42, and 1.52 packings, respectively.
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experiment, with the exception of some discrepancies in the
magnitudes of the peaks. The model captures signicant
features of the data: for instance, the peak around q ¼ 0� is
much different between Fig. 9(b) and (d), and the model repli-
cates this difference. We also note that if we loosen the deni-
tion of force chain segments to simply those forces that are the
largest two forces acting on any droplet (independent of how
large they are relative to forces on neighboring droplets), we
nd nearly identical distributions as the ones shown in Fig. 9.

Our analysis suggests so far that the force chain network is
random, without long-range correlations. It therefore seems
plausible that the distribution of force chain lengths should
obey a random process. If there is a probability p for a force
chain segment to be connected to a neighboring force chain
segment, then the distribution of chain lengths should obey the
scaling P(n) ¼ (1 � p)pn, where n is the number of force
segments within a force chain. In Fig. 10 we plot the distribu-
tion of chain lengths for each packing. The data decay expo-
nentially over 3 orders of magnitude. The data are t by P(n) ¼
(1 � p)pn with p z 0.73 (see caption for details), indicating that
it is highly likely that for a force chain to propagate through the
material. The ts are shown as the dashed lines and show good
agreement with the data other than at n ¼ 1.

In granular quasi-static intruder simulations with friction
between particles by Peters et al., using a more sophisticated
denition of force chains, they also found an exponential
distribution of chain lengths.44 From their reported data on
P(n), we estimate a value of p ¼ 0.65. It appears that statistically
a force chain can be thought of as a random process with
probability p for the force chain to propagate, independent of f
but perhaps depending on the sample details.
5 Conclusions

We have introduced a new experimental model system composed
of quasi-2D emulsions droplets to study the jamming transition.
Our droplets are circular in shape and deform when pressed into
one another, and at the contacts between two droplets the forces
This journal is ª The Royal Society of Chemistry 2013
are in-plane mimicking a true 2D system. We can accurately
measure the forces between touching droplets to within 8%,
where our method is not limited to our experiment, and could be
extended to determine forces in 2D foams, 3D emulsions, and 3D
foams. Our model system has unique strengths; we can easily
make samples with any distribution in particle sizes, emulsions
are stable over many days, setup is cheap, our droplets have no
static friction, and our method can be extended to cases of ow.45

Using our model system we observed power-law scaling of
the contact number and pressure with f � fc, similar to prior
numerical models.5–8 Notably we nd that all three t parame-
ters for the contact number scaling are quite close to the values
found in 2D simulations. We verify experimentally for the rst
time a link between the interparticle force law and the critical
pressure exponent, illustrating a direct relationship between
the bulk properties of an amorphous solid and the interaction
between the constituent particles. The agreement of our results
and the numerical models shows that the qualitatively different
particle interaction we have does not play a signicant role in
determining the geometric structure and bulk modulus.

Our analysis of the inter-particle forces found a probability
distribution of forces in good agreement with those found in
prior experiments and simulations, strongly suggesting that the
shape is universal. We further examined the spatial structure of
the large forces (“force chains”). The directions of neighboring
force chain segments are uncorrelated although there is a
tendency for two force chains to be in the same direction. This is
a sensible result as this allows the large forces acting on a droplet
to balance one another. The Brujíc–Zhou model, which assumes
random and uncorrelated force segments, recovers our experi-
mentally observed probability distribution of angles between
adjacent force segments.

This work provides more evidence for the universality of
various properties of the jamming transition, such as critical
scaling, the shape of the force distribution, and the structure of
the force network.
A Method for determining force law

In this section we describe in detail our method for determining
an empirical force law that relates the outline of droplets to the
contact forces. For an overview of our method see Section 3. This
section is organized in the followingmanner: rst, we discuss the
measurements from droplet outlines; second, we discuss the
general form of possible force laws; third, we present the opti-
mization problem; fourth, we deduce the best force law consis-
tent with the data.
A.1 Measurable variables

In this subsection, we discuss the various quantities measur-
able from droplet images, and their measurement errors. In the
following subsections, these quantities will be used to deter-
mine the forces between droplet pairs.

The larger the contact between two droplets, the more force
they feel. This is quantied by the contact length lij between two
droplets. We measure this by identifying the portion of each
Soft Matter, 2013, 9, 3424–3436 | 3431

http://dx.doi.org/10.1039/c3sm27287g


Fig. 11 (a) Experimental image of droplets with the contacts found using our
algorithm indicated by green lines. (b) Experimental image of a rattler droplet
being held in contact with two neighboring droplets due to a slight attraction. In
this image the droplet are motionless and the system is not inclined. (c and d) A
close up view of a droplet. Each portion of the water–oil interface is fitted to an
arc with constant radius of curvature. The fits are shown as the different colored
arcs.

Table 3 Parameters characterizing the droplets in our 4 different monodisperse
samples. R0 is the 3D radius of the droplets, r0 is the 2D radius, h is the gap
thickness of the chamber, poly is the polydispersity of the sample, and l0 is the
length of contact for two droplets just in contact. Our uncertainties for the various
measures are �0.2 mm in R0, �2 mm in r0, and � 4 mm in h. The variability in l0
grows with droplet size and the measurement uncertainty can be expressed as
�0.04r0 in l0

R0 [mm] r0 [mm] h [mm] poly (%) l0 [mm]

164 183 186 5.5 50.8
143 156 180 1.6 48.8
105 128 96 1.9 36.6
84.1 89 96 2.5 30.3

Table 4 The parameters characterizing the droplets in our 3 bidisperse samples.
Other parameters related to these droplets are shown in Table 1. The first column
s¼ r(big)0 /r(small)

0 is the size ratio. The two radii shown are the 3D droplet radii of the
small and big droplets before placing them in the chamber. There are also three
contact types: small–small (ss), small–big (sb), and big–big (bb), and therefore
there are three l0 values. Our uncertainties for the various measures are �0.2 mm
in R0 and �4 mm in h. The variability in l0 grows with droplet size and the
measurement uncertainty can be expressed as �0.04r0

s

R(big)
0

[mm]
R(small)
0

[mm]
h
[mm]

l(ss)0

[mm]
l(sb)0

[mm]
l(bb)0

[mm]

1.25 102 86.5 104 52.0 56.0 63.0
1.42 105 80.0 106 46.8 50.9 58.5
1.52 108 79.2 104 45.0 51.0 58.7
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droplet's perimeter that is shared between them, shown as the
light green lines in Fig. 11(a). lij is calculated as the length of the
line segment. Since we can only measure the two endpoints of
each contact to 1 pixel accuracy, we have an uncertainty dl of

ffiffiffi
2

p
pixels. For our highest magnication lens (5� lens with 0.55�
camera lens) this gives dl ¼ 1.1 mm and for our lower magnica-
tion lens (1.6� lens with 1.0� camera lens) this gives dl¼ 1.96 mm.

One expects that any two droplets with a nonzero contact
length (lij > 0) would experience a repulsive force at the contact.
However, we observe a slight attractive interaction between
droplets as shown in Fig. 11(b), where the central droplet is
adhering to two neighboring droplets. In this particular
conguration, the attractive force is balanced by the repulsive
force, and therefore, the net force at each contact on the central
droplet is zero for some nite contact length l0.

We determine l0 by averaging together the contact lengths
found between 25–50 droplets at the very bottom of the incline.
The standard deviation of these contact lengths is about 0.025r0,
which is one to two orders of magnitude smaller than measured
contact lengths lij of deformed droplets in contact, and therefore
we conclude that l0 is reasonably well-dened by the mean value.
In addition to the attraction, some of the nite contact length is
due to optical resolution limits resulting in a systematic effect: for
similar conditions, l0 is longer when using the 1.6� lens (data in
Table 3) as compared to the 5� lens (data in Table 4). Accord-
ingly, the force law will be taken to depend on Dl ¼ l � l0,
cancelling the systematic effect, and the force law will be required
to obey f(Dl ¼ 0) ¼ 0. We could also require f (l) � f(l0), but this
will not produce force laws of any better quality and oen the
force laws will be more complex in form.
3432 | Soft Matter, 2013, 9, 3424–3436
Near the jamming area fraction, our fractional uncertainty is
typically dl/Dlij z 100%. In contrast, ten droplet diameters up
the incline (f � fc z 0.01) typical values of Dlij are much larger
and the uncertainty drops to about dl/Dlij z 5%, and decreases
further still for larger f.

Next, we wish to know the curvature of the droplet outline. We
measure ri for a droplet by locating each portion of the perimeter
belonging to a water–oil interface, that is, not touching another
droplet. We t these portions of the interface to an arc of
constant curvature as shown in Fig. 11(c and d) to obtain a local
radius of curvature for each portion. The radii for the different
portions should be the same, but in practice they vary due to
noise. We arithmetically average these local radii of curvature to
obtain the mean curvature ri for the droplet. To determine the
uncertainty, we create articial images of circular perimeters with
known radii and noise commensurate to our experimental data,
and t these perimeters to nd values of r. The distributions of r
reproduce the experimentally observed variance in the individual
radii of curvature, and let us deduce that the measurement error
of ri is 3.5% for the 5� lens and 7% for the 1.6� lens. In contrast
toDlwhich is easier tomeasure at large f, rc is harder tomeasure
at large f as the curved portions of droplets are shorter. Closer to
fc, these uncertainties are smaller.

The last measurable quantity to consider is �R, the mean 3D
curvature of a compressed emulsion droplet in our quasi-2D
system. This curvature relates to the Laplace pressure and somay
be relevant for the force law, although we will show below that it
is not needed; nonetheless we discuss it for completeness. For
This journal is ª The Royal Society of Chemistry 2013
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Fig. 12 An experimental image of a mineral oil droplet squeezed between two
glass slides, where the gap thickness is 1 mm, Ri,k ¼ 0.88 mm and Ri,t ¼ 0.56 mm.
The orange (light) dashed line is a fit to the perimeter to obtain Ri,k and Ri,t.

Paper Soft Matter

D
ow

nl
oa

de
d 

by
 E

m
or

y 
U

ni
ve

rs
ity

 o
n 

27
 F

eb
ru

ar
y 

20
13

Pu
bl

is
he

d 
on

 1
3 

Fe
br

ua
ry

 2
01

3 
on

 h
ttp

://
pu

bs
.r

sc
.o

rg
 | 

do
i:1

0.
10

39
/C

3S
M

27
28

7G
View Article Online
scenarios where droplets are asymmetrically deformed in 3D, the
water–oil interface has two principle radii, the maximum radius
of curvature Ri,1 and the minimum radius of curvature Ri,2. For
droplets compressed in this manner, the mean curvature 1/�Ri ¼
1/2(1/Ri,1 + 1/Ri,2) is constant anywhere on the surface.

To measure Ri,1 and Ri,2 experimentally we take side view
images of isolated droplets in a sample chamber of gap thickness
h ¼ 1 mm (see Fig. 12). The width of the droplet cross-section is
2Ri,1, and Ri,1 corresponds to the droplet radius that would be
measured as the 2D radius in the normal top-down view of our
experiments. The free surface of this compressed droplet is a
surface of mean curvature �R; this is not a circular arc of constant
radius as R1 varies with height. To obtain Ri,1 and Ri,2 of the
droplet, we t the surface using the method of Caboussat and
Glowinski46 (an algorithm to generate the surface of a droplet
compressed between two boundaries). In Fig. 12, we show the t
as the orange dashed line. Repeating this method for many
droplets, we nd Ri,t/h ¼ 0.552 � 0.011 for droplets in the size
range we use. For simplicity, we simply use Ri,t¼ 0.552h for all ri.
A.2 Mathematical treatment of an empirical force law

Our goal is to nd an empirical force law f(lij,l0,ri,rj) relating the
contact force between two droplets i and j to the information
about their outlines. A priori it is useful to consider what such a
force law should look like.

We rst consider two cases where the force law is already
known, the ideal 2D case and the ideal 3D case. By ideal, we
mean that the contact angle between two droplets is zero, and
where there are no attractive forces. Generally these are not
realistic assumptions, due to the interactions between the
surfactant molecules at the contacting interface.47,48 For the
ideal cases, the force between two droplets in contact can be
modeled using Princen's 2D model49–51 or Zhou's 3D model.52

We use lower case to indicate 2D variables and upper case to
indicate 3D variables. In 2D, the contact between two droplets
has a contact length lij, and in 3D, the contact has contact area
Aij. The force law for the two models are

2D Model : fij ¼ g2D

lij

rij
; where rij ¼ ri þ rj

rirj
(2)

3D Model:Fij ¼ g3D

Aij

Rij

; whereRij ¼ Ri þ Rj

RiRj

(3)

In the above equations, g2D is a 2D line tension and g3D is a
3D surface tension. For scenarios where droplets are
This journal is ª The Royal Society of Chemistry 2013
asymmetrically deformed in 3D, the radius of curvature Rij in
the 3D model must be replaced by the mean curvature �Rij. Note
that in the above expressions, the force laws do not explicitly
depend on the center to center distance between two droplets.
Starting from similar physical arguments that led to eqn (3),
Mason et al.12 derived an approximate force law depending
linearly on the center to center distance of two droplets, which
allowed them to correctly model the dependence of the sample
modulus on volume fraction. At larger compressions, the rela-
tionship is non-linear, and in the work Lacasse et al.53 they
measured this non-linearity. They found that the exact form of
the force law slightly depended on the number of neighbors and
how the neighboring droplets are arranged. This is because the
number of neighbors and their positions modies the radius of
curvature of a droplet, which should be the more fundamental
quantity (as it relates to the Laplace pressure within a droplet).
Accordingly, we focus our search for force laws of forms similar
to eqn (2) or eqn (3).

The 2D model would be straightforward to apply as we
directly measure lij, ri, and rj. To apply the 3D model, a
reasonable assumption is that Aij is related to lij and perhaps the
droplet radii. The radii �Ri and �Rj are measurable as described in
the previous subsection.

Rather than choosing between the 2D and 3Dmodels, we test
generalizations of both models and let the data select what
works best. As described above, one of our variables the force
will depend on is Dlij and we constrain all possible force laws so
that f(Dlij ¼ 0) ¼ 0. In general, we consider models of the form
f(2D)ij (Dlij,1/rij;~a) for 2D and f(3D)ij (Dlij,1/�Rij;~a) for 3D.~a ¼ a1,a2,.
are the tting parameters associated with a given functional
form. To give an example, we could write f2Dij ¼ a1(Dlij/rij)

a2 with
tting parameters a1 and a2. In all, we test a total of 86 various
2D and 3D force laws of different functional forms that include
exponentials, hertzians, power laws, and polynomials in lij, 1/rij,
and 1/�Rij, and combinations of these forms.
A.3 Optimization problem

To test the force laws, we establish constraints from the data,
optimize each force law subject to the constraints, and then
quantify how well the optimum force laws describe the data. To
start with, we consider the constraints on forces in the x and y
directions.

In the y-direction the sum of the forces on any given droplet
is equal to the buoyant weightWD. This is in practice hard to use
directly, as WD is small compared to the contact forces, and
likely below limits set by noise. Therefore, rather than consid-
ering individual droplets, we note that droplets located at a
given y must support the observed total buoyant weight Wobs of
droplets below them, known simply from measuring the total
area of droplets with centers below y. The way in which these
droplets support this buoyant weight is through contact forces,
and for an assumed force law fij(Dlij,1/rij; ~a) we can determine
these contact forces by substituting our measured values for Dlij
and rij (or �Rij) into the function. If the assumed force model
accurately predicts the forces, then the sum of these contact
forces

P
Fmod,y at a given y will equalWobs. Here

P
Fmod,y are the
Soft Matter, 2013, 9, 3424–3436 | 3433
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sum of the y-component of only those forces pointed in the
downward directions. The reason we only consider the down-
ward facing forces is because the collective buoyant weight is
pushing upward, and to satisfy Newton's 3rd law, the balancing
forces must be facing downward. We convert Wobs and Fmod,y

into 2D pressures (force per unit length) by writing lobs ¼ Wobs/
w, lmod ¼

P
Fmod,y/w, using the width of the chamber w. l is in

essence the 2D hydrostatic pressure at height y. Because there is
no static friction at the sidewalls, there is no Janssen effect.54

We dene a goodness of comparison in the y-direction as

cy
2 ¼

X
y

��
lðyÞobs � lðyÞmod

���
lðyÞobs

�	2
; (4)

where smaller values of cy
2 indicate a better match between the

assumed force law and the actual forces. In the equation, y
indexes various distances up the incline where l(y)mod and
l(y)obs are sampled, and the angle brackets are an average over
y. We normalize by hl(y)obsi to make cy

2 dimensionless, and
since hl(y)obsi is independent of the assumed force law, it does
not change the results. We sample l at intervals of 5r0 up the
incline. At each y sampled, lmod is calculated using the contact
lengths and droplet radii for all droplets found between a
distance y � 5r0 and y + 5r0 up the incline, and lobs is calculated
using the position and radii of all droplets below a distance y up
the incline.

We next consider the forces in the x-direction. In contrast to
the y-direction there are no external forces, so the sum of the
forces on each droplet in the x-direction is zero. From this we
construct the goodness of comparison

cx
2 ¼

X
i

" X
j

fx;ij

!,D

~f i

E
#2
; (5)

where the Fx,ij is the x component of the force at a contact
between droplets i and j and h|~f i|i is the average net contact
force exerted on droplet i. In the equation, fx,ij are the forces
predicted by the assumed force law. Due to measurement error,
the forces will not sum to zero, and the deviation from zero
grows with h|~f i|i. We assume that the deviation will grow line-
arly with h|~f i|i and to fairly weight the contributions of each
droplet to cx

2, we normalize the sum of the forces by h|~f i|i.
Finally, we dene a net goodness of comparison c2 ¼ cx

2cy
2

which indicates how well an assumed force law models the
forces in both the x and y directions. Since we know the buoyant
weight of our droplets in units of mN, this allows us to nd a
force law in units of mN. Later, we compare c2 between the
different force laws to determine the best overall force law.
Fig. 13 A plot of the universal empirical force law for each dataset, derived as
discussed in the text. The solid lines are samples with a gap thickness of
approximately 180 mm and the dashed lines are samples with a gap thickness of
approximately 110 mm. The legend indicates R0.
A.4 Empirical force law: monodisperse and bidisperse

We now apply our method to nd an empirical force law. We
start by determining the force law for same size droplets in
contact using data taken on four different monodisperse
samples. The samples are prepared by placing droplets with 3D
radius R0 into a sample chamber with gap thickness either 100
� 4 mm or 180 � 4 mm, and once in the chamber, the droplets
have a 2D radius of r0. The error assigned in the gap thickness
represents the unavoidable variations in the gap thickness
3434 | Soft Matter, 2013, 9, 3424–3436
measured at different points along the sample chamber. We
note that the larger the sample chamber, the larger the vari-
ability of gap thickness we observe. As the chambers are inex-
pensive, sample chambers with more variability than�4 mm are
discarded. Aer the sample chambers are lled, they are sealed
to prevent evaporation, and then placed on a microscope
inclined at 28�. Droplets rise to the top and come to rest in
mechanical equilibrium, at which point we acquire images of
the sample. Various parameters characterizing each mono-
disperse sample are shown in Table 3.

To determine the best force law we pick each possible
functional form, optimize the parameters ~a for it, and then
compare c2 for the different functions. Several functional forms
all have small c2 values, and of these we choose one that is
simple and plausible. For simplicity, measuring the 2D rij is
simpler than measuring the 3D �Rij. For plausibility, functions
that treat Dlij and rij as Dlij/rij most closely resemble eqn (2).

We judge the most reasonable function with low c2 to be Fij
¼ a1Dlij/rij + a2(Dlij/rij)

2, quite similar to eqn (2). We also choose
this function because we nd that we can easily rescale this
function using the 3D droplet radius R0 so that we have a
universal force law for all four datasets (the four different
droplet sizes). The rescaled force law is

Fij ¼ a1R0Dlij/rij + a2(R0Dlij/rij)
2. (6)

where a1 ¼ 4.25 mN mm�1 and a2 ¼ 4.12 mN mm�2.
The rescaled force law is shown for each dataset in Fig. 13. We

see that all the force laws are nearly linear; the quadratic
correction is about 10% for the largest forces. The rescaled force
law shows that all the data collapse very well and only slightly
deviate between each other at largerDlij/rij. For these larger values
inDlij/rij, the area fraction is close to 0.96 which is the upper limit
where we can still condently measure rij; for those close-packed
droplets, only a few pixels occupy the water–oil interface and rij is
hard to determine. We do not claim that eqn (6) is the correct
force law; in particular, while a1 has units of surface tension and
is plausible for an oil–water surface tension, the physical
This journal is ª The Royal Society of Chemistry 2013
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meaning of a2 is unclear. Rather, eqn (6) accurately provides the
forces between our droplets, within the measurement limitations
set by our data. Also, there may be other sources of error; for
instance, Lacasse et al.53 has numerically shown that the force law
has a slight sensitivity to the number of neighbors and the rela-
tive positioning of the neighboring droplets. To examine if there
are other potential sources of error, using eqn (6) we compared
the deviations in the computed net force on each droplet to the
deviations we expect given our measurement errors, and nd the
two agree well. Thus, within the limitations of our measurement
errors, we have resolved the forces as best as possible, conrming
eqn (6) is adequate.

To test how well one can determine a force law given nite
data and measure error, we additionally simulated inclined
mechanically stable droplet packings of 1000 droplets with a
known force law, then added noise to the data consistent with
experimental noise. Applying our empirical method to the
simulated data, we recover the known force law with 2% errors
in the coefficients (noise equivalent to the experiments using
the 5� microscope objective) or 5% errors in the coefficients
(noise equivalent to the experiments with the 1.6� microscope
objective). This suggests it is possible that the �4% variations
between the force laws for different sized droplets seen in
Fig. 13 are simply due to noise, and they may well have exactly
the same force law.

So far we have focused on force laws in monodisperse
samples, but we also need to measure forces between different-
sized droplets in bidisperse samples. To obtain a force law
between droplets of different sizes, we apply our method to nd
an empirical force law using data taken on three different
bidisperse samples. The bidisperse samples are prepared in the
same manner as the monodisperse case. Table 4 summarizes the
various parameters of our bidisperse systems; see also Table 1.

For the case of a bidisperse sample with small and big
droplets, there are 3 possible contact types to consider: small–
small, small–big, and big–big. Our previous results give us
small–small and big–big forces. We assume the unknown
small–big force law obeys the same functional form as the
monodisperse case (eqn (6)), where a1 and a2 need to be
determined. Recall that eqn (6) contains a term R0 that rescales
the force law and makes it universal. For the small–big contacts
there are two different R0 values, one for each droplet size. To
account for these two radii we substitute R0 with the arithmetic
mean of the two radii hR0i giving as our bidisperse empirical
force law Fij ¼ a1hR0iDlij/rij + a2(hR0iDlij/rij)2, where a1 and a2 are
unknown. To obtain a1 and a2 for our bidisperse samples we
minimize c2, and nd that a1 and a2 are very close to that found
for the monodisperse case and within the 4% variation we
expect from nite sampling and measurement error. Therefore,
we have shown that to within 5% error we have a found a
universal force law that works for any droplet size and is close to
Princen's 2D model49–51 with a small second order correction.
A.5 Final comments on force law

The uncertainties in determining forces are related to the
magnication. The higher the magnication, the better we can
This journal is ª The Royal Society of Chemistry 2013
measure the contact length l and the mean curvature r. Fortu-
nately, given that we study static samples, this means we can
take overlapping images at high magnication to reduce our
uncertainties, as described in Section 2. In an experiment with
moving droplets, overlapping images of different elds of view
would be difficult or impossible. This situation would require
limiting the eld of view to fewer droplets, if the same resolu-
tion of forces was desired. For any magnication, uniformity of
lighting is essential so that the appearance of droplets is
uniformly related to their true shape and size. As discussed in
the previous subsection, our imperfect knowledge of the force
law gives us a systematic uncertainty no worse than 5%. To
determine the random uncertainty for particular forces, we take
measured rij and Dlij values, add noise commensurate to our
known uncertainty (discussed in Section A.1), and recalculate
the force to see the variation. The bidisperse data of Section 4
were taken with a 1.6� lens and have a random uncertainty of
16%. The monodisperse data used in the calibration procedure
were taken with a 5� lens and have a random uncertainty of 8%.

An additional experimental complication is that droplets at
rest occasionally feel a static force from the top and bottom
plates. This is likely due to contact line pinning on impurities or
microscopic scratches on the glass. To minimize this, we pre-
clean each slide with methanol which we gently blow off the
slide. Harsher cleaning methods do not signicantly reduce the
droplet pinning. The magnitude of these forces can be esti-
mated by examining a dilute concentration of droplets in a
horizontal slide, and then slowly tilting the slide to see when the
droplets begin to move due to gravity. For the samples dis-
cussed in this work, they begin to move at tilt angles of about
4.5� or sooner. We discard any sample chambers with pinning
stronger than this. Given that our experiments are conducted at
a tilt angle of 28�, the buoyant weight of a droplet is sin(28�)/
sin(4.5�) ¼ 6 times larger than any pinning force. Taking the
analysis a little further, since the friction force on any droplet
can range from zero to the maximum, a more appropriate
estimate for the buoyant weight of a droplet is sin(28�)/
(sin(4.5�)/2) ¼ 12 times the average pinning force. These esti-
mates show that the inter-droplet forces seen in the jammed
emulsions (f > fc) are on the order of a hundred times the
pinning forces. We believe that the situation in our calibration
experiments are even more favorable. Aer compaction, the
pinning forces should be in random directions, as an analogous
granular experiment observed that particles move in random
directions during compaction.55 Therefore, a vector average
gives a pinning force on each droplet very close to zero. Since
our empirical method relies on the average vector forces on a
droplet, the pinning forces can safely be neglected in the results
of Section 4. Note that if our experiment was scaled down in size
(smaller droplets, thinner plate gap) the pinning forces become
more signicant compared to the droplet weight and can
dominate the results.
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