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Rearrangements during slow compression of a jammed two-dimensional emulsion
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As amorphous materials get jammed, both geometric and dynamic heterogeneity are observed. We investigate
the correlation between the local geometric heterogeneity and local rearrangements in a slowly compressed
bidisperse quasi-two-dimensional emulsion system. The compression is driven by evaporation of the continuous
phase and causes the area packing fraction to increase from 0.88 to 0.99. We quantify the structural heterogeneity
of the system using the radical Voronoi tessellation following the method of Rieser et al. [Phys. Rev. Lett. 116,
088001 (2016)]. We define two structural quantities characterizing local structure, the first of which considers
nearest neighbors and the second of which includes information from second-nearest neighbors. We find that
droplets in heterogeneous local regions are more likely to have local rearrangements. These rearrangements are
generally T1 events where two droplets converge toward a void, and two droplets move away from the void
to make room for the converging droplets. Thus, the presence of the voids tends to orient the T1 events. The
presence of a correlation between the structural quantities and the rearrangement dynamics remains qualitatively
unchanged over the entire range of packing fractions observed.
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I. INTRODUCTION

There are a variety of soft amorphous solids: for example,
emulsions, foams, and colloids. An emulsion is composed
of droplets of one liquid immersed in a second immiscible
liquid, with the droplets coated with surfactant molecules to
prevent droplet coalescence. A foam is similar except with
gas bubbles. A colloid is composed of solid particles in a
liquid. In all of these cases, these materials become “jammed”
as the packing fraction of the systems increases [1]. The
control parameter is the volume fraction φ (or area fraction
for two-dimensional systems). For a foam, for example, if the
gas volume fraction is above about φJ ≈ 0.65, the foam has
a yield stress and can form a pile on the table [2–4]; this
identifies φJ as the jamming volume fraction. In contrast to
solids which crystallize, the structure of these jammed solids
is amorphous and thus spatially heterogeneous [5,6].

Even though such materials have a yield stress, emul-
sions and foams are composed of soft components (bubbles,
droplets) and thus can be forced to flow at high φ > φJ [7–14].
Given the structural disorder and the fact that flowing requires
the component particles to move past one another, it is not
surprising that the flow is highly disordered and involves
particles moving and rearranging collectively [15]. It also is
sensible that there can be some connection between local
structure and local dynamics [6,16–19]. Much of the prior
work was done at constant density, leaving an open question
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as to what are useful ways to characterize structure that are
density-independent (although see Ref. [20] for recent work
applying machine learning across a range of densities). In this
paper, we study a quasi-two-dimensional emulsion sample
composed of oil droplets in water. The water is allowed to
slowly evaporate so that we can study the rearrangements that
occur as the area fraction increases from φ = 0.88 (just above
jamming) to φ = 0.99 (overjammed), as shown in Fig. 1. We
characterize the structural heterogeneity of the jamming emul-
sions using structural quantities proposed by Rieser et al. [21].
These quantities derive from the radical Voronoi tessellation,
and account for the structure of first-nearest neighbors, or both
first and second-nearest neighbors. We observe correlations
between the rearrangements droplets exhibit, and structural
measures indicating voids between droplets or other structural
inhomogeneities. As is expected, droplets are more likely to
move if they are near voids. However, in particular we note
that droplets tend to move with definite orientations relative to
those voids. Intriguingly, we demonstrate that the correlations
between structure and motion stay qualitatively (and in some
cases quantitatively) similar even as the area fraction changes
significantly. This shows the utility of the structural measures
introduced by Rieser et al.

II. EXPERIMENTAL METHODS

We use emulsions for several reasons. First, they are rel-
atively inexpensive samples to produce [22,23]. Second, we
can achieve values of φ well above jamming as the droplets
can deform [24]. Third, we can exploit evaporation to slowly
change φ in situ. Fourth, unlike foams, the emulsion samples
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FIG. 1. The images of a portion of the emulsion sample at
t = 0 min with φ = 0.88 (a), and at t = 100 min with φ → 1 (b).
The field of view in panels (a) and (b) is 1.76 × 1.44 mm2. The scale
bar represents 200 µm.

do not coarsen—the volume in each oil droplet remains con-
stant throughout the experiment.

Our emulsions are mixtures of water and silicon oil
droplets using Fairy detergent (mass fraction 0.025) as a
surfactant to stabilize the droplets against coalescence. The
oil droplets are generated using a standard co-flow microflu-
idic technique [25]. We make bidisperse emulsions with two
batches of monodisperse droplets at a volume ratio of about
1:1; thus the small droplets are more numerous. The droplets
are then placed in a quasi-two-dimensional (quasi-2D) sample
chamber and deform into pancake shapes [11,24]. We make
our sample chamber with two 25 mm × 75 mm microscope
glass slides separated by 100 µm thick spacers (transparency
film) sealed with epoxy. The spacers with the epoxy create
a gap of 120 µm between the two glass slides. During con-
struction of the sample chamber, we use clamps to press the
two slides together to try to squeeze the epoxy to a uniform
thin layer. The final chamber thickness varies slightly across
the sample chamber, but by no more than ±3 µm. We do
not observe any droplet motions that appear connected to
the thickness variability. The spacers are cut with a central
circular space to contain the sample, and two smaller openings
at the sides for evaporation; see Fig. 2.

The mean 2D diameters of the small droplets and the large
droplets are 265 µm and 379 µm, respectively, resulting in a
size ratio of about 1 : 1.43. The individual droplet species
have a polydispersity (standard deviation of droplet radii di-
vided by mean radius) of 4% and 2% for small and large
droplets. The diameters are well defined at the start of the
experiment (φ = 0.88), and as the droplets compress into
polygons, the diameter defined as d = √

4A/π stays similar
for each droplet as compared to its earlier value. To initialize

FIG. 2. (a) Top view and (b) side view of the sample chamber.
Water slowly evaporates from the two chamber openings at left and
right. The slide is 75 mm long for scale.

the experiment, the two batches of droplets are premixed in
a vial, and then added to the sample chamber via a pipette.
In practice this premixing results in reasonably well-mixed
samples as observed in the sample chamber. The data to
be presented are from one experimental run. In this sample,
there is additionally one unusually large droplet with diameter
883 µm, formed likely due to coalescence of droplets prior to
adding the sample to the microscope slide. All droplet diam-
eters are larger than the sample chamber thickness, ensuring
that the sample is quasi-2D. (Several other experiments were
conducted with generally similar results to what is reported
below, but had unacceptable net flows driven by the evapora-
tion process, and so were discarded from our analysis.)

After the sample chamber is filled, it is placed on a micro-
scope for imaging with a 5× objective lens. A 1280 × 1024
pixel image is recorded every 30 s with a camera mounted
on the microscope for 100 min. The field of view is 6.07 ×
4.85 mm2 and is comprised of over 300 droplets. We track
the trajectories of all the droplets using standard techniques
[11,26]. Our particle position uncertainty is ±2.4 µm. Given
that we need to see the entire droplet outline to success-
fully analyze its center of mass and shape, we do not track
droplets which overlap the edges of the images. The number
of droplets tracked is ∼170 at the start of the experiment and
as the sample evaporates and droplets are pressed together, the
number rises to ∼230 by the end of the experiment.

To determine the area fraction, we do direct image analysis
of the raw images. First, we fill in all droplet areas that have
been previously identified. Second, we additionally fill in all
pixels darker than the threshold used for the original droplet
identification: this thus fills in all pixels except those which are
in voids. The area fraction is then the area of the filled pixels
divided by the area of the radical Voronoi polygons enclosing
the identified droplets; the radical Voronoi polygon method
will be described below. Overall, given the optical distortion
of the true position of the droplet boundaries, there is some
uncertainty of the droplet area leading to uncertainty of φ

[27]. We therefore estimate a likely systematic uncertainty on
φ of ±0.02. Note also that this treats the droplets as strictly
two-dimensional; we do not account for the curvature at the
droplet edges due to the confining glass plates. At the high
area fractions we consider such that droplets are pressed to-
gether, the details in the direction of the optical axis—that is,
perpendicular to the 2D image—are unlikely to matter [24].

To slowly drive rearrangements, we allow water to evapo-
rate from the two sample chamber openings. Over the course
of the experiment, the sample transitions from less jammed
to well overjammed with the packing fraction φ increasing
from 0.88 to 0.99. (The sample is expected to jam at φ ≈
0.84 [28–30].) Images from the beginning and end of the
experiment are shown in Figs. 1(a) and 1(b). In Fig. 1(a),
the droplets are random close packed and barely deformed at
t = 0 s. At t = 100 min in Fig. 1(b), the droplets are deformed
into noncircular shapes, some of which are close to polygons.
As the area fraction slowly increases, droplets deform and
occasionally rearrange. The area fraction as a function of time
is plotted in Fig. 3(a). The data for φ(t ) are well fit by an
exponential function, although we do not know of a partic-
ular reason that it should be an exponential. It is plausible
that as φ increases, the remaining small amount of water
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FIG. 3. Various experimental quantities change over time.
(a) The measured packing fraction φ as a function of time. The
dashed line fit is the function φ(t ) = 1 − (1 − φ0) exp(−t/τ ) with
φ0 = 0.867 and τ = 39 min. (b) The average cage-relative displace-
ment of the droplets in each pack, rescaled by the mean diameter
of all the droplets 〈d〉 = 290 µm, as a function of time with a
logarithmic vertical axis. For this exponential fit, A = 0.035 and
τ = 38 min. (c) The average length of the Voronoi anisotropy vector
〈| �C|〉, normalized by the interparticle spacing l , as a function of time.

finds it harder to travel through the smaller channels between
droplets, thus decreasing the evaporation rate. The fitted decay
time of 39 min quantifies the slow speed at which the sam-
ple changes. This timescale can be compared to previously
observed droplet motion timescales: droplet rearrangements
in a slowly driven quasi-2D emulsion similar to our sample
occurred on timescales of a few seconds [11]. This suggests
that the area fraction of our experiment increases quite slowly
compared to the timescale for any rearrangements that are
caused by that area fraction change.

III. RESULTS

Our goal is to understand how local structure influences
where the occasional droplet rearrangements occur. We first
need to quantify rearrangements and do so by calculat-
ing the displacement of each droplet, using the timescale
�t = 30 s. There is a difficulty with this definition: occasion-
ally large groups of droplets all move collectively—but these
are motions relative to the camera, not relative to each other.
Accordingly, we quantify the motion using the concept of the
cage-relative displacement [31]. The cage-relative displace-
ment is defined as the displacement of a droplet relative to
the average displacement of its nearest neighbors, where we

FIG. 4. (a) The polygon is the radical Voronoi cell for the droplet.
The black dot is the droplet center and the offset red dot is the
radical Voronoi cell center. Typically, these two centers are not at
the same position. The anisotropy vector is shown as the red arrow
which points from the particle center to the Voronoi cell center.
(b) The anisotropy vector field is demonstrated by the arrows for
each droplet. (c) The anisotropy vector field (arrows) and radical
Delaunay triangulation. (d) An example of one radical Delaunay
triangulation with three corresponding droplets and the anisotropy
vectors. In panels (b), (c), and (d), to make the arrows visible, we
magnify the length of the vectors by a factor of 30.

define nearest neighbors through a radical Voronoi tessellation
(discussed further below). Thus, these displacements quantify
rearrangements of droplets relative to their neighbors rather
than collective motions. In the remainder of this paper, we will
use ��r to refer to the cage-relative displacements. Figure 3(b)
is the plot of the average cage-relative displacement of the
droplets rescaled by the mean diameter of all the droplets
〈d〉 = 290 µm. In general the average local movement of the
droplets, 〈|��r|〉/〈d〉, gradually slows down, but with many
fluctuations. In some moments the movements are dramati-
cally larger than the others, revealing the temporal dynamic
heterogeneity through the entire compression process.

We next wish to quantify the local structure to deter-
mine what features of the structure influence the cage-relative
motions. We quantitatively characterize the local geomet-
ric heterogeneity of the system based on radical Voronoi
tessellation. The radical Voronoi tessellation is a standard
partition of space which takes into account the radius of each
droplet, and which highlights the closest free space near each
droplet. Specifically, this geometric analysis considers each
droplet as a circle with diameter d = √

4A/π based on its
area, and centered on the center of mass of the droplet. Each
droplet is surrounded by a polygon comprised of all points
closer to that circle’s boundary than to any other circle’s
boundary. The edges of these polygons correspond to points
for which the length of tangents to each adjacent circle are
equal. These are the radical Voronoi polygons which tile
space, and are displayed as the polygons in Fig. 4. Then,
we define the anisotropy vector as the vector pointing from
the droplet centroid to the Voronoi cell centroid, displayed
as the arrows in Fig. 4. The magnitude of anisotropy vector
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FIG. 5. The relationship between the droplets’ local movements and the features of their local structure in both less jammed packing with
φ < 0.96 (red triangles) and overjammed packings with φ � 0.96 (blue circles). (a) Plot of the mean cage-relative displacements as a function
of the normalized Voronoi vector length. Each data point corresponds to data averaged over at least 100 droplets with | �C|/l falling in a certain
range. The black error bars are the uncertainties of the mean (the standard deviation of the N values going into each average, divided by

√
N).

(b) Plot of the mean cage-relative displacements as a function of the standard deviation of the local divergence of the anisotropy vector field.
Each data point is an average including at least 100 droplets with σdiv falling in a certain range. The black error bars are the uncertainties of the
mean. (c) Plot of σdiv as a function of | �C|/l . The gray-scale heat map indicates the counts (over the full duration of the experiment) seen at each
location, ranging from a low of 4–20 counts in the upper-left/lower-right corners, to a high of ∼2400 for the darkest bins. The red triangles
(φ < 0.96) and blue circles (φ � 0.96) are data points showing the average σdiv of the droplets with | �C|/l in a certain range. (d) The heat map
of 〈|��r|〉/〈d〉 demonstrating its dependence on σdiv (y axis) and | �C|/l (x axis). The lighter shade (yellow online) represents large cage-relative
motion, and the darker shade (blue online) represents smaller cage-relative motion, as indicated by the color bar to the right. The grid size for
panel (d) is coarser than in panel (c) to ensure that each bin contains at least 60 observations.

is zero if the free space is homogeneously distributed near a
droplet. Thus, the length of anisotropy vector, | �C|, represents
the geometric heterogeneity of the nearest neighborhood of a
droplet.

As the sample area fraction increases over time, the aver-
age vector lengths decrease. However, there are two potential
reasons for this decrease: the sample could be restructuring
in interesting ways, or the droplets could merely be moving
closer together (consistent with the increasing area fraction)
and thus the size of the Voronoi cells decreases. To remove
the trivial geometric effect of droplets getting close together,
we divide | �C| by the typical distance between droplets l ,
which is the square root of the inverted number density of
the droplets in each packing. Thus, | �C|/l quantifies the local
geometric heterogeneity of a droplet. In our experiment | �C|/l
of the droplets ranges from 0 to 0.09. The average of this
quantity decreases with time, as shown in Fig. 3(c), although
the functional form of this decrease is unclear. Given the
normalization by l , this remaining time dependence reflects
that the structure becomes more homogeneous as φ increases:
droplets are more likely to reside close to the centers of their
Voronoi polygons.

Given that a droplet with larger than average | �C|/l is
in a more geometrically heterogeneous environment—and

in particular has a larger void in the direction of �C—we
conjecture that the value of | �C|/l is positively correlated
with motion. Figure 5(a) shows that this conjecture is true:
droplets with larger | �C|/l exhibit faster motion on average in
both less jammed (red curve with φ < 0.96) and overjammed
(blue curve with φ � 0.96) packings. The droplets’ motion,
|��r|/〈d〉, is the cage-relative displacement of a droplet within
30 s rescaled by the average diameter of the droplets. During
jamming, the droplets move faster if they reside in a het-
erogeneous nearest neighborhood. The top curve in Fig. 5(a)
corresponds to the low area fraction data (φ < 0.96, roughly
the first half of the experiment) when motion is faster than
the high area fraction data shown in the bottom curve.
While the overall magnitude of cage-relative motion decreases
over the course of the experiment, the qualitative relation
between the magnitude of the motion and the structural quan-
tity | �C|/l stays similar. This result is qualitatively similar to
prior observations of dense amorphous systems which found
connections between locally heterogeneous environments and
enhanced likelihood of motion [32–35]. Fitting all the data as
a linear function of both φ and | �C|/l gives us

|��r|/〈d〉 = −2.18(φ − φJ ) + 0.345| �C|/l + 0.422, (1)

using φJ = 0.84.
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Rieser et al. note that the anisotropy vectors “tend to point
in toward locally less well-packed and away from locally more
well-packed regions of the packing, reminiscent of sinks and
sources in a vector field” [21]. Accordingly, they examined
the divergence of the anisotropy vector field as a way to
characterize voids in the packing, which we will now do with
our droplet data. As is illustrated in Fig. 4(c), the 2D packing
is partitioned into many local regions based on the radical
Delaunay triangulation. The vertices of a Delaunay triangle
are the centers of three neighboring droplets corresponding
to three anisotropy vectors, shown in Fig. 4(d). We choose
the Delaunay triangle as the local region, and calculate the
divergence of the three anisotropy vectors in each Delaunay
triangle. We weight the result with the area Ak of each triangle
divided by the mean area 〈A〉 of all of the triangles, resulting
in the final quantity considered by Rieser et al.,

Qk ≡ ( �∇ · �c)
Ak

〈A〉 , (2)

where c is the field of anisotropy vectors [21]. Qk is a dimen-
sionless quantity that represents the geometric property of the
corresponding local region defined by the radical Delaunay
triangle k. Positive (negative) values indicates overpacked
(underpacked) regions. As was true for Rieser et al., the dis-
tribution of Qk has a zero mean, is nearly Gaussian, and has a
slight negative skewness: the underpacked areas (Qk < 0) are
more probable than would be expected for a perfect Gaussian
[21]. Also in agreement with the results of Rieser et al., the
standard deviation of the distribution P(Qk ) decreases as the
area fraction increases (data not shown).

As displayed in Fig. 4(c), each droplet is surrounded by
several radical Delaunay triangles, which corresponds to sev-
eral local divergences Qk . We next compute the standard
deviation σdiv of the several Qk surrounding each droplet.
Each anisotropy vector �C represents structural information
for a droplet and all of its first-nearest neighbors, and each
Qk uses information from a droplet’s �C and the �C of its
nearest neighbors. Accordingly, σdiv is determined by both
the first- and second-order nearest neighbors, and represents
the structural character of a larger neighborhood than | �C|/l .
Large σdiv indicates that the droplet resides in a heterogeneous
local structure and small σdiv indicates a homogeneous local
structure.

As we can see from Fig. 5(b), the droplets with larger σdiv

move faster on average in both less jammed and overjammed
packs. The data can be fit to the linear function

|��r|/〈d〉 = −2.16(φ − φJ ) + 0.0740σdiv + 0.419, (3)

using φJ = 0.84. A three variable fit gives

|��r|/〈d〉 = − 2.17(φ − φJ )

+ 0.301| �C|/l + 0.0200σdiv + 0.420. (4)

The dependence on σdiv is reasonable: large σdiv is another
way to note that a particle is in a spatially heterogeneous
environment, much as | �C|/l does. Thus, it is reasonable that
the trend of the curves in Figs. 5(a) and 5(b) are similar: both
| �C|/l and σdiv influence particle rearrangements. Equation (4)
shows that the two structural quantities capture slightly
different aspects of the motion as both terms have nonzero

coefficients. Given that | �C|/l changes by ∼0.06 and σdiv

changes by ∼0.25, in Eq. (4) the magnitude of the | �C|/l term
is 0.301 × 0.06 ≈ 0.018 and the magnitude of the σdiv term
is 0.02 × 0.25 ≈ 0.005. This suggests the former is a more
significant influence on the dynamics than the latter.

Clearly both �C and σdiv have a similar influence on particle
motion, as seen in Figs. 5(a) and 5(b) and as quantified by
Eq. (4). Both quantities relate to the void structure around a
droplet: �C has geometric information from the nearest neigh-
bors, and σdiv includes information also from second-nearest
neighbors. To examine correlations between these two quanti-
ties, Fig. 5(c) shows a a heat map of the two quantities for all
droplets at all times; they are indeed correlated. The lines with
red triangles and blue circles show the mean σdiv as a function
of | �C|/l for lower and higher volume fractions, respectively,
and in both cases there is a positive correlation between the
two structural quantities. Are these two quantities redundant
for predicting motion, or is one more useful than the other?
To check this, we make a heat map of the magnitude of the
cage-relative displacement as a function of both variables in
Fig. 5(d). The darker data in the lower left corner shows that
the smallest magnitude motion is for particles that have both
small | �C|/l and σdiv. The right portion of the data suggests that
| �C|/l is more influential over droplet motion, in that droplets
with small σdiv but large | �C|/l are among the most mobile
particles. That being said, droplets with small | �C|/l but larger
σdiv are slightly more mobile than those droplets with both
quantities small.

The discussion thus far has focused on the magnitude of
motion; we next turn to considering the direction of motion.
Given that �C has information about a droplet’s neighbors
(through the radial Voronoi tessellation), droplets may move
in a direction influenced by �C. As is shown in Fig. 4(b),
the anisotropy vector of a droplet �C typically points to-
wards the free space in its nearest neighborhood. As φ

increases, the droplets tend to fill in the free space and get
closer to the neighbors. We calculate the angle α between
�C and the cage-relative displacement of each droplet; see
the sketch in Fig. 6(a). The probability distribution of α,
as is shown in Fig. 6(c), peaks at ranges of [0◦, 20◦] and
[160◦, 180◦] with probability ≈0.16 and 0.14, respectively.
This is true in both packings that are less jammed (red curve
with φ < 0.96) and overjammed (blue curve with φ � 0.96).
In other words, the droplets are likely to move towards the
direction of �C with α < 20◦, or to the opposite direction
with α > 160◦. This experimental phenomenon can be well
explained with T1 topological neighbor-exchanging events
[4,8,11,36–42]. In a T1 rearrangement, two droplets move
inward to fill in the free space (α ≈ 0◦), and the other two
move outward (α ≈ 180◦), as shown in Fig. 7. Thus, not
only does a large Voronoi anisotropy vector �C make it more
likely that a droplet rearranges, it also influences the direction
of that rearrangement. The motion with α ≈ 0 is similar to
that observed in prior work which studied motion in a 3D
granular packing [43]; however, they did not observe the α ≈
180◦ motion, perhaps because T1 events are more complex
in 3D materials. In addition to T1 rearrangements, there are
numerous motions with 20◦ < α < 160◦. These movements
are indicative of nearby droplet motion caused by the T1
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FIG. 6. (a) Sketch showing the angle α between the droplet cage-
relative displacement direction ��r (pointing to the right, in blue) and
the Voronoi anisotropy vector �C (pointing up, in red). (b) Sketch
showing the angle β between ��r (pointing to the upper right, in
blue) and the center of the radical Delaunay triangle with the smallest
normalized divergence Qk , representing the most significantly under-
packed direction (pointing to the upper left, in red). (c) Probability
distribution of α. (d) Probability distribution of β. In panels (c), (d),
the curves with the red triangles represent the droplets in less jammed
packing with φ < 0.96, and the curves with the blue circles represent
the droplets in overjammed packings with φ � 0.96. The probability
distributions are only for particles with cage-relative displacements
�r > 2.4 µm to ensure that the direction is not ill-defined (given that
this is our positional uncertainty).

rearrangements, which are more random in their direction of
motion and generally smaller in magnitude of displacement
[44,45].

The Qk’s have directional information like �C and it is
plausible they too should influence the direction of a droplet’s
displacement. Among the several Delaunay triangles sur-
rounding a droplet, the one with smallest Qk is the most

FIG. 7. One example of a T1-like rearrangement. (a) The particle
packing in experiment. The red arrows pointing toward the central
void demonstrate the Voronoi anisotropy vectors �C. The blue arrows
show the displacement of each droplets during the next 30 s: the top
and bottom droplets converge, and the left and right droplets move
apart. Here the converging droplets are already nearest neighbors,
so the T1 event (changing nearest neighbors) is more than halfway
completed. (b) The picture of particle packing in experiment with
δt = 30s after (a). In this process, two droplets move inward and two
move outward.

underpacked region near the droplet. As φ increases, in
general, the droplets move to fill in the underpacked regions.
To investigate how Qk relates to the direction of droplet’s
motion, we define the angle β as the angle between ��r and the
direction of the mass center of the radical Delaunay triangle
with the smallest Qk . This angle is sketched in Fig. 6(b). The
probability distribution of β, Fig. 6(d), peaks at ranges of
[0◦, 20◦] and [160◦, 180◦] with probability ≈0.18 and 0.16 in
both jammed and over-jammed packings. As with the angle α

[Fig. 6(c)], this result can also be explained with T1 neighbor-
exchanging events.

In terms of directionality, Fig. 6 shows that both the
first and second-nearest neighbors influence the direction of
droplets movement. Seeing that the peaks of the probability
distributions of β in Fig. 6(d) are slightly higher than the ones
of α in Fig. 6(c), the structure of the second-nearest neighbors
appears to have a more significant impact on the direction-
ality of droplets movement. Likewise, 〈2 cos2 α − 1〉 = 0.16
and 〈2 cos2 β − 1〉 = 0.26, a further indication that β is more
influential. (This average would be 1 if motion was completely
parallel and/or antiparallel to the given direction, and would
be 0 if the angle is uniformly distributed.) We also note that the
directions of the Voronoi anisotropy vector and the direction
of the smallest Qk are similar: the distribution of the difference
between their angles has a mean of 0◦ and a standard deviation
of 48◦.

IV. CONCLUSION

Our goal has been to understand how local structure in-
fluences rearrangements in a quasi-two-dimensional emulsion
where the area fraction slowly increases toward φ = 0.99. To
do this, we use the Voronoi polygon analysis introduced by
Rieser et al. [21]. In their article they present one measure
that has information about a particle and its nearest neigh-
bors; and a secondary measure that includes information from
the second-nearest neighbors as well. These two measures
characterize spatial heterogeneity, for example the presence of
larger voids near a particle, or the presence of a more densely
packed region nearby. We find both of these measures are
correlated with particle motion: larger spatial heterogeneity
predicts subsequent larger particle displacements. Moreover,
both measures are vectors pointing toward voids. These di-
rections preferentially orient the T1 rearrangements, giving a
sense of where droplets can converge together (to fill in the
void) or move apart (thus making room for the converging
droplets). These two measures of spatial heterogeneity are
correlated, so it makes sense that they are both effective pre-
dictors of motion. That being said, the measure accounting for
first-nearest neighbors is slightly more predictive of a parti-
cle’s likelihood of rearranging, while the measure accounting
for first and second-nearest neighbors is slightly more predic-
tive of the particle’s direction of motion.

In our experiment the sample changes area fraction from
just mildly jammed (φ = 0.88) to nearly confluent (φ =
0.99). It is intriguing that the relationship between the
structural measures and the particle displacements remains
consistent over the entire area fraction range. During the
experiment the mean value of one measure drops by more
than factor of 2 [Fig. 3(c)] and the displacements drop by
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more than a factor of 10 [Fig. 3(b)], yet the correlations
between structure and displacement magnitude are qualita-
tively the same [Figs. 5(a) and 5(b)], and correlations between
structure and displacement direction are quantitatively the
same [Figs. 6(c) and 6(d)]. It is plausible that machine learn-
ing techniques could discern structural measures with even
stronger predictive power [46–48]. Our results suggest that
for machine learning algorithms, it would be useful to use
area-fraction independent structural quantities for the machine
learning analysis. Our results also suggest that key structural
features of importance are the spatial heterogeneity of φ and
in particular the voids.

It is also noteworthy that the center of the radical Voronoi
polygon matters even as φ → 1 and the voids vanish to points.
At these high area fractions it is plausible that droplets min-
imize their surface energy when their center of mass lies
closest to the center of mass of their radical Voronoi polygon;
this generally leads to more compact polygons [49]. Thus, it
is sensible that droplet rearrangements will still be influenced
by the structural quantities we consider. This bears similarities
to model systems such as “Voronoi fluids” [50] and the “geo-
metric Lloyd’s algorithm” [49,51,52] which study collections

of generating points and describe the energy of the system in
terms of the Voronoi polygon shapes made from these points.
Other similar models are used to study the rearrangements
of confluent cells at φ = 1, for which a variety of dynamics
are also possible [53–55]. In the case of Lloyd’s algorithm,
the goal is to move the generating points such that they move
toward the center of mass of their Voronoi polygon [49], thus
matching our results by construction. For the other dynamics,
one can study equilibrated systems for which rearrangements
do not change the distributions of �C or σdiv, the structural
quantities we study. That being said, it is still plausible that
these structural quantities may influence the larger displace-
ment rearrangements in these φ = 1 Voronoi-based models.
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