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We study glassy dynamics using a simulation of three soft Brownian particles confined to a two-dimensional

circular region. If the circular region is large, the disks freely rearrange, but rearrangements are rarer for smaller
system sizes. We directly measure a one-dimensional free-energy landscape characterizing the dynamics. This
landscape has two local minima corresponding to the two distinct disk configurations, separated by a free-energy
barrier that governs the rearrangement rate. We study several different interaction potentials and demonstrate

that the free-energy barrier is composed of a potential-energy barrier and an entropic barrier. The heights of both
of these barriers depend on temperature and system size, demonstrating how non-Arrhenius behavior can arise

close to the glass transition.
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I. INTRODUCTION

Glassy materials are amorphous solids: disordered micro-
scopically, and unable to flow macroscopically [1-4]. They
are inherently out of equilibrium [5,6], in contrast to crystals.
In 1969, Goldstein proposed the idea of the potential-energy
landscape, a conceptual framework for thinking about glassy
and crystalline materials [7]. The potential-energy landscape
is defined as the potential energy U of a material “plotted as
a function of 3N atomic coordinates in a 3N 4 1 dimensional
space,” where N is the number of atoms [7]. At low tempera-
tures, an ideal crystalline solid will have particle coordinates
that correspond to a global minimum of the potential-energy
landscape. Glasses are disordered, so at low temperatures
a glass will have coordinates in a local minimum of the
potential-energy landscape, but there are an enormous number
of such local minima [8-11].

Turning to higher temperatures where a material is a liquid,
thermal energy allows the system to rearrange constantly, and
so the 3N atomic coordinates trace out a trajectory traversing
the potential-energy landscape. If the temperature is close to
the material’s glass transition, and if crystallization is avoided,
then the trajectory through the landscape spends most of its
time near local minima, with occasional passages through a
saddle point in the landscape to an adjacent minimum [12,13].
The number of minima, their depth, and the details of the
saddles between them can be connected to the microscopic
dynamics of samples at a variety of temperatures [10,11].
At low temperatures, the thermal energy kT does not allow
the system to escape a local minimum easily. In particular,
the escape from any particular local minimum is a thermally
activated process, depending on the barrier height between
that local minimum and the minima adjacent in the 3N + 1)-
dimensional space. Of course, given the high dimensionality
of the problem, visualizing this is impossible except for
conceptual sketches [9,14,15], of which the earliest one we
are aware of was by Stillinger and Weber in 1984 [16].

The picture of a potential-energy landscape changes when
one considers a system of hard spheres. Hard spheres are
defined as particles that have no interaction energy when
they are not in contact, and infinite interaction energy if
they touch. As a function of the 3N sphere coordinates,
the potential-energy surface is flat at U =0 except for
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prohibited configurations for which U = oo. Rather than local
minima separated by saddles, the landscape has flat open
areas separated by bottlenecks that correspond to entropic
barriers. As hard spheres can form glasses at high densities
[17-19], these entropic barriers must function similarly to
the potential-energy barriers in a potential-energy landscape
[20-22].

In 2012 Hunter and Weeks introduced a simple model
with hard particles where the entropic landscape was directly
measurable [22]. The model consists of three hard disks
executing Brownian motion within a two-dimensional circular
region. As illustrated in Fig. 1, the system has two distinct
configurations of the three disks. A transition occurs between
these two configurations when any one of the three particles
passes between the other two. When the system size R
is smaller, these transitions are rarer. This model captures
the flavor of hard spheres near their glass transition, where
rearrangements are difficult due to particle crowding [23,24].
Hunter and Weeks directly calculated a free-energy landscape
based entirely on the entropy of the states. They demonstrated
that the transition time scale was related to the entropic barrier
height, t ~ exp(Sp).

In the current paper, we extend the model of Hunter
and Weeks to consider the case of soft particles. In this
situation, we now have a potential-energy landscape that varies
smoothly as a function of the particle coordinates. However,
the best description of our model is through the free-energy
landscape, which includes both entropy and potential energy.
The transition state shown in Fig. 1(b) still corresponds
to a barrier, now with both potential-energy and entropic
components. We examine potential energy and entropy to
understand the relative importance of each in determining the
transition rate between states. Our most significant result is
an explicit demonstration that the influences of both potential
energy and entropy depend on temperature; that is, the effective
free-energy barrier height depends on 7. Our results help
bridge concepts between soft and hard particles in a simple
model, complementing prior molecular dynamics simulations
done with large numbers of soft particles [25-27].

Our model is a straightforward system with non-Arrhenius
scaling as the glass transition is approached. Arrhenius scaling
occurs in a system where a time scale T for a transition
is set by a fixed-energy barrier of size A, such that 7 ~
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FIG. 1. Sketch of our model, with three distinguishable particles
confined within a circular system. In (a), 4 is the distance between
one of the particles and the axis defined by the other two. In (b), R
is the radius of the confining boundary. The states (a)—(c) show a
rearrangement event in our model, where & changes sign.

exp(—A/kpgT). In a glass-forming system, t could be the
timescale for diffusion or flow, and t grows dramatically as
the glass transition is approached. Often, this happens in a
non-Arrhenius fashion [28]: T grows faster than expected as
T is decreased. This leads to the interpretation that A = A(T)
increases as T decreases. We demonstrate that in our model
A is due to potential energy and entropy, both of which are
T-dependent, even though the underlying potential-energy
landscape is T -independent.

II. THE MODEL SYSTEM

We study three two-dimensional particles confined to a
circular system of size R as shown in Fig. 1. We will consider
four distinct particle interactions in our simple model system.

Our first particle type is a commonly used finite-ranged
harmonic potential [29,30]. This considers deformable soft
particles interacting through purely repulsive body-centered
forces. Our harmonic potential is defined as

2—rij\2.
Unm(rij) = {(1)10( )%

Here r;; is the center-to-center distance between particles i and
Jj. All particles have radius 1 (a; = a; = 1) and do not interact
when they are not touching (7;; > 2). The particles have the
same interaction with the wall:

Uo(—r"“f(zR*l))z; rie > R—1
0, Tie < R-1

rij<2 1
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where 7;, is the distance between the particle center and system
center, that is, it is the radial coordinate of particle i. As the
particle radius is 1, when r;, = R — 1 the particle comes into
contact with the wall, and for r;. > R — 1, the interaction
energy increases and the particle feels a repulsive force from
the wall.

Our second particle type is also repulsive, but has a
infinite range interaction between the particles and between the
particles and the wall; we term this the “long-range potential.”
We define this potential as

-12
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Urr(rij) = Uo(é) 3)
between the particles and
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between the particles and the wall.
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Our third particle type uses the Lennard-Jones potential
(“LJ potential’), which approximates the interaction between
a pair of neutral atoms [31]. The Lennard-Jones potential is
defined as

—12 -6
) — Tij _ Tij
ULi(rij) = Uo( > > Uo( > ) . 5)

This interaction potential differs from the first two (harmonic
and long-range) in that Lennard-Jones particles have both a
repulsive and an attractive component. In contrast to the first
two potentials, these particles have a finite preferred separation
distance that minimizes U at r;; = 27/¢ = 2.245. To simplify
this model, the wall is hard. In this case, the interaction energy
with the wall is U = 0 until the particles touch the wall (r;. =
R — 1) in which case U = oo.

We consider one last particle type using the Weeks-
Chandler-Andersen potential (“WCA potential”) [32]. This
potential starts with the LJ potential, truncates it at the
minimum, and then shifts it upward so that the potential goes
smoothly to zero:

Uy . 7/6
Uy + 9 rij <27

05 rij = 27% ©

Uwca(rij) = {
This then is the repulsive component of the LJ potential and
has no attractive component. As with the LJ potential, we again
assume a strictly hard contact with the confining wall. Like the
harmonic potential, the WCA potential is finite-ranged, but in
contrast this potential diverges at r;; — 0. This latter behavior
is like the long-range potential, which also diverges.

These four interaction potentials capture several interesting
possibilities. Two are finite-ranged; three are purely repulsive;
three diverge as the particle separation goes to zero.

We use the Metropolis algorithm [33] to simulate Brownian
motion of the particles, similar to previous work by our
group [22]. At each Monte Carlo step, we try to move each
particle (one at a time) in a random direction with root mean
square step size of 0.01 (or in some cases smaller). We
consider the change in energy AU for the trial move. These
trial moves are accepted with probability 1 if AU < 0, and
with probability exp(—BAU) otherwise, with 8 =1/kpT.
The initial condition is with the three particles starting at
the vertices of an equilateral triangle of side length 2, and
the system is equilibrated after the first transition of the sort
shown in Fig. 1. The simulation is evolved continuously for
at least 20 transitions (in the cases with very slow dynamics),
and more typically 100-1000 transitions. Given that there is
no memory in this system, each condition is run only once as
a time-average was adequate (although we did check this with
multiple runs several times, and also checked that the results
are insensitive to the root mean square step size).

In all situations, the radius of the confined system is R
as indicated in Fig. 1. For the harmonic potential, recall the
particle radius is 1, so for R = 3 the particles can just line
up across a diameter of the system with U = 0. For R < 3,
particles can only change configuration [Figs. 1(a)-1(c)] witha
nonzero temperature. The WCA potential is also finite-ranged,
although the range is not 1 but rather 27/¢, so here R = 1 +
26 = 3.245 is the smallest radius at which particles can line
up across a diameter with U = 0. For the long-range potential
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and the LJ potential, particles always interact with nonzero
potential energy, and so there is no value of R with any special
meaning.

Note that the meaning of Uy differs between the potentials
in an unimportant way. For the harmonic potential, Uy is the
maximum potential energy between two particles when they
are fully overlapped (r;; = 0). For the long-range potential,
Uy is the potential energy between two particles when r;; = 2.
For LJ and WCA, there are yet other meanings for Uj. In
the simulation, we simply set Uy = 1 and vary the value
of kgT. As Uy is not comparable between the different
interactions, likewise specific values of T are not comparable
either. Accordingly, our discussion will focus on comparing
behaviors as functions of 7 without need to compare specific
values. The remainder of the paper will study the behavior of
our model as we change R, T, and the interaction potential.
In particular we are most interested as the system becomes
“glassy”: smaller R and/or smaller T'.

III. RESULTS
A. Free-energy landscapes

To study the free-energy landscape, we define a macrostate
variable h as shown in Fig. 1(a) [22]. To do this, we pick
two particles to define an axis (say, pointing from particle 1
to particle 2). k is the distance of the third particle above (or
below) this axis. & can be positive or negative, and is zero
at the transition state shown in Fig. 1(b). Therefore, when &
changes sign, a rearrangement occurs. It is arbitrary which two
particles define the horizontal axis; if we consider 4’ and h”
defined using different pairs of particles, all three & variables
change sign simultaneously upon a transition.

Following Ref. [22], we construct the free-energy landscape
by counting occurrences of each £ in the simulation for given
parameters (R and 7'). We then compute P (%), the probability
of seeing each h value. Finally, the free-energy landscape is
computed directly according to the Boltzmann distribution,
P(h) ~ exp(—F(h)/kgT). For simplicity, we set kg = 1 in
the simulation. We shift F' (k) so that the minimum value is
F=0.

Figure 2(a) shows the free-energy landscape for the har-
monic potential model. There is a free-energy barrier at the
transition state 7 = 0. For R = 3.2, the particles do not have
to overlap at the transition state, but for 7 > 0 they are allowed
to overlap, which makes transitions easier. Keeping R fixed,
as T — 0 overlaps are less likely, and the free-energy barrier
for transitions grows. At T = 0, overlaps are impossible,
although since this is a finite-range potential, transitions still
occur. In this situation the free-energy landscape is identical
to the landscape for hard disks, indicated by the dashed line
in Fig. 2(a). In other words, at low T, thermal fluctuations
decrease and these soft particles become hard.

The other features of the free-energy landscape shown
in Fig. 2(a) are straightforward to understand. There are
two symmetrically located minima close to & = £2 that
correspond to the most probable states for the three particles
[22]. For large values of ||, the particles are forced to interact
with the confining wall. This causes the free energy to grow
dramatically due to the large potential-energy penalty.
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FIG. 2. (a) The free-energy landscape for the harmonic (“HM”)
interaction potential. R = 3.2 and the temperatures are as indicated.
(b) Free-energy landscapes for interactions as indicated, where “LR”
designates the long-range potential, “LJ” the Lennard-Jones potential,
and “WCA” the Weeks-Chandler-Andersen potential. R = 3.2 and
the temperatures are as indicated, chosen so that the barrier height at
h = 0 is comparable for the different interaction potentials.

Figure 2(b) shows free-energy landscapes for other inter-
action potentials, with temperatures chosen so that the barrier
height is approximately the same for each, and R = 3.2 kept
constant. The shapes are all qualitatively similar, although the
long-range potential has particles confined to a smaller range
of h. For the hard-particle case, the minima occur precisely
at h = £2 [22]. For the other potentials, the locations of the
minima vary with 7. For the LR and LJ potentials, one can
compute the configuration that minimizes U, and the & that
minimize F(h) are fairly close to the & for those minimal U
configurations. The 7 dependence, however, makes it clear
that minimizing the free energy is not the same as minimizing
the potential energy. Maximizing entropy plays a role as well
in determining the h that minimizes F(h). As previously
reported, in the hard model, d F'/dh is discontinuous at h = +2
[22]. However, this derivative is continuous everywhere in all
of the soft models.

B. Dynamics and free-energy barriers

The dynamics are straightforward when considering A(¢).
Often, h(t) stays close to the values A, that minimize the
free energy landscape (Fig. 2), but occasionally A () switches
sign. We quantify the dynamics by plotting the mean-square
displacement (MSD) (Ah?) as a function of lag time At in
Fig. 3 for the harmonic potential [Fig. 3(a)] and long-range
potential [Fig. 3(b)]. At the shortest times, particles diffuse
fairly freely. At intermediate timescales, the MSD starts to
level off, reflecting that the system is trapped in one of
the probable states shown in Figs. 1(a) and 1(c). At longer
timescales, the system can swap between these two states, and
the MSD begins to rise again. At the longest timescales shown
in Fig. 3, the MSD levels off due to the finite system size.

To quantify the transition timescale v, we measure the
average time between sign changes of 4. However, during a
transition, there are often small fluctuations right around 4 = 0
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FIG. 3. (a) Mean-square displacement in /4 space for the
harmonic (“HM”) interaction potential. R =29 and T =
107", 1072, 10722, 10~2* (from top to bottom, red to black). The
dashed line has a slope of 1. (b) Mean-square displacement in &
space for the long-range (“LR”) interaction potential. R = 2.9 and
T = 10°, 10*°, 10*2, 10* (from top to bottom, red to black). The
dashed line has a slope of 1.

that are not true transitions. To avoid biasing t toward lower
timescales, we stipulate that once 4 = 0 is crossed, the system
must move a further distance Ak = 1 before returning [22];
our results are not sensitive to this choice. The probability
distribution of timescales P(t) is exponentially distributed
so the mean value gives the appropriate timescale, which we
plot in Fig. 4 as a function of temperature [Fig. 4(a)] and
inverse temperature [Fig. 4(b)]. The two largest system sizes
R show a horizontal leveling off of t at cold temperatures.
This is the limit where the soft particles behave as hard
particles, and t reaches the value seen for purely hard particles
[22]. For the smaller system sizes, particles must overlap to
have a transition, and so as 7' — 0 this becomes rare and t
diverges. Were any of these systems to be Arrhenius with a
temperature-independent potential-energy barrier, the data in

/1,

10" 00 02 04 06 08 1.0
T 1077

FIG. 4. Dependence of T on 7 and R in harmonic potential
system. Curves in different colors show the life time as a function of
T with different R as indicated. The lifetimes 7 are normalized by
79 = 1/2D, the time a free particle would take on average to diffuse
a distance of 1, using the diffusion constant D from the simulation.
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FIG. 5. The lifetime grows exponentially with the free-energy
barrier Fj, as F, — 0o, as indicated by the solid line. The symbols
are as indicated and correspond to a variety of R and T values; for
specific ranges of R and T, see ranges shown in Figs. 4, 6, and 9.

Fig. 4(b) would fall on a straight line; that they do not indicates
that the system is non-Arrhenius.

An alternate way to think of Arrhenius behavior is in terms
of the free-energy barrier for transitions, Fj. Calculating the
free-energy landscapes as in Fig. 2 allows us to determine F;, =
F(h = 0). Transitions are less frequent with higher F,. Figure
5 verifies that T grows Arrheniusly as a function of Fp,7 ~
exp(BFyp) as F, — oo. The deviations seen for small F, are
due to large system sizes: for larger systems, it simply takes
longer for particles to move to the transition state [22]. The
details of this vary depending on the potential. Additionally,
the vertical spread of symbols for a given potential for F, < 5
reflects that different R and 7 values can have the same Fj,.
Nonetheless, the collapse of the data at larger F}, indicates that
T grows Arrheniusly with Fj, precisely where the dynamics
are slowest.

Our primary interest is understanding the cause of glassy
dynamics in our system. In other words, we’d like to
understand how t grows large (equivalently, how Fj, grows
large) as we decrease T and/or decrease R. Figure 6 shows
F,/kpgT as a function of T for different particle types. In
each panel, the different curves are for different system sizes
R. As expected, F),/kpT grows with decreasing T and with
decreasing R. Figures 6(a) and 6(b) show some curves with
qualitatively different behavior, in that F,/kgT goes to a
plateau as T — 0. As with Fig. 4, this is because of the
behavior of the free-energy landscape shown in Fig. 2(a) for
these two finite-ranged potentials: for large system sizes R,
even at T = 0 the particles can rearrange without overlapping.
For large R, the plateau values for Fj, seen in Figs. 6(a) and
6(b) are precisely the free-energy barrier heights for hard disks
[22]. For this argument to work, the system size R must
exceed a critical value, R. = 3 for the harmonic potential
and R, = 3.245 for the WCA potential (as discussed at the
end of Sec. II). For R < R,, particles must overlap at 7 = 0
with U > 0, and so as T — 0 the free-energy barrier F, will
diverge. For the LJ and LR potentials, at » = 0 we always have
U > 0 and so not surprisingly Fj, diverges in all cases at low
temperatures, with the details depending on R.

These behaviors raise an interesting question. In the cases
of Figs. 6(a) and 6(b) with a plateau, the system approaches the
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FIG. 6. Dependence of k% on T and R. Curves in different colors
show the free-energy barrier as a function of 7' with different R
as indicated. The interaction potentials are (a) harmonic (“HM”),
(b) WCA, (c) Lennard-Jones, (d) long-range (“LR”). (As discussed
in Sec. II, recall that the specific values of 7" are not comparable

between the different potentials.)

hard-disk behavior as T — 0. For hard disks, this free-energy
barrier is entirely an entropic barrier [22]. However, clearly for
many other cases in Fig. 6, the free-energy barrier is at least in
part due to the potential-energy component of the barrier. To
what extent in any of these cases can the free-energy barrier
be ascribed to entropy, and to what extent to potential energy?

C. Simple models for the transition state

To understand the interplay of entropy and potential energy
at the transition state (h = 0) for our three-particle system,
we consider a simple model for the transition state. Consider
a system moving along a reaction coordinate 4 with a flat
energy landscape, except for a barrier at h = 0. At h = 0, we
will assume there is a second coordinate x in the orthogonal
direction. In the three-particle system, this would account for
other degrees of freedom for the particle locations subject to the
constraint 7 = 0. We examine three ideas for U(x), sketched
in Fig. 7.

First consider model 1 [Fig. 7(a)], where we let x be
constrained on the interval 0 < x < 1 and the potential-energy
barrier depends on x as

Ux)=0, 0<x <5, Q)
Ux)=Uo, d<x<1, (®)
4
U U U
" u 7 UIo(IxI—S)
VX X ! : x
0% @ ! ® 8?

FIG. 7. Sketch of three simple potential-energy landscapes:
(a) model 1, (b) model 2, (c) model 3.
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so that the system can either make a transition at zero potential-
energy cost, or with a finite cost Uy > 0.

Attempts to cross with zero potential-energy cost occur
with probability

P1 =4, (9)

and these attempts always succeed. Attempts to cross else-
where occur with probability (1 —§) and succeed with
probability exp(—Uy/ kg T); thus, the likelihood of a barrier
crossing taking this pathway is

p2 = (1 = 8)exp(=Uo/kpT). (10)

The crossing attempt entirely fails with probability 1 — p; —
p». If attempts are made with a timescale 7y, then the mean
transition time can be shown to be

To

T=—"
P11+ p2

(11

The question to consider, then, is what this transition looks
like in terms of a free-energy barrier, if we average over the
coordinate x ? Two limits are immediately obvious. If Uy/ kg T
is sufficiently large, p; > p» and the transitionrate is governed
by an entropic barrier. In the converse limit, if § is sufficiently
small, the U = 0 pathway is vanishingly rare (p; < p») and
transitions are governed by the potential-energy barrier Uy. In
between these limits, one can think of this system as having
an effective free-energy barrier that is due to both potential
energy and entropy. The mean potential energy the system has
when the barrier is crossed is given by

BUop2
p1+ 172’

using B = 1/kpT. The partition function at the crossing is
given by Z = p| + p», the free-energy barrier heightis §F =
—1InZ = —1In(p;, + p»), and the entropy can be derived as

BU) = (12)

oF
BTS =—pT— = In(p1 + p2) + B(U) 13)

(which is also apparent from F = U — TS).

The conclusion is that while the potential-energy surface
is T-independent and always has a U = 0 transition pathway,
the free-energy barrier depends on T and on average requires
nonzero potential energy for the transition. Given that p;
depends on T, Egs. (12) and (13) show that both the potential-
energy and entropy contributions to the free-energy barrier
depend on T.

We next consider the more realistic model 2, where
the transition has a harmonic potential with respect to the
coordinate x:

U(x) = Upx>. (14)

For this potential, the mean potential energy required is
B(U) = 1/2 (equipartition). In the interesting limit 7 — 0,
the free-energy barrier grows as 8 F ~ | In T'|. As the potential-
energy contribution is independent of 7', the barrier growth is
due to entropy: at low temperatures the system only crosses at
lx| < W/kgT/Uy. As with model 1, while U (x) is independent
of T, the free-energy barrier depends on T'.
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Finally, we consider model 3, which is a hybrid of the
previous two models:

Ux)=0, |x|<3§, (15)

U(x) = Up(]x| — 8)*, |x| = 6. (16)

In this model, the mean potential energy required to cross the

barrier is 8(U) = %(l + 2&\/@)_1. At low temperature and
with large 8, the system prefers to cross within the region
|x| < & where potential energy is zero. In this case, % —
o0, and B(U) — 0. For small § and/or large T, the average
potential energy found when crossing the barrier is larger. At

high temperature and with small §, when § / ﬂnﬂ — 0, 8(U) —
1/2, which is the same as model 2.

To be clear, for these models we are really interested in the
case where the system climbs a potential-energy hill to reach
the transition state 7 = 0. We are then considering how the
system crosses through the 4 = O state, and concluding that
this requires additional potential energy (on average) and also
navigating an entropic barrier. In other words, merely having
enough potential energy to reach the saddle is insufficient,
as threading through the saddle’s lowest point is of low
probability. In all of these simple models of the transition
state, the transition timescale will be

T = 79 eXp(BUnin) exp(BF), (17

where Up, is the potential energy of the saddle’s lowest
point, and F' is the additional free-energy barrier associated
with the & = 0 potential-energy landscape cross-section. The
exp(BUnin) contribution gives Arrhenius scaling with T, and
the exp(B F) contribution provides additional non-Arrhenius
scaling. In many situations, the exp(8Um,) term dominates,
but one can anticipate that if Uy > Uy, then the exp(BF)
term may dominate.

D. Barriers: Energy and entropy

This discussion motivates us to divide the free-energy
barrier in our three-particle simulations into energetic and
entropic components. As F = U — T S, we consider the free-
energy barrier to be

BFy, = BUp + Sp, (18)

where as usual, kg = 1. The relevant quantities are illustrated
in Fig. 8. hpi, is the value of & that minimizes the free
energy. The contribution of potential energy to the barrier is
defined as U, = (U)(0) — (U)(hmin). (U) is the black curve
indicated by U, in Fig. 8 and is averaged over > 20 barrier
crossings. Equation (18) lets us calculate S, from F, and
Up,. Note that the definition of S, differs from U, by a
minus sign: S, = S(hmin) — S(h) > 0, such that it is positive
(and thus a barrier). The minimum possible potential energy
for each value of # is the thin red curve in Fig. 8, which
is at zero for most values of h. We define Up;, as the
minimum potential energy needed to cross 4 = 0 if the system
finds the optimum transition path, as indicated in Fig. 8. It
is clear from Fig. 8 that U, will almost always be larger
than Up,, although a rare exception for the Lennard-Jones
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FIG. 8. The free-energy landscape for the harmonic (“HM”)
interaction potential. R = 2.9 and T = 10722, The blue curve is
the free-energy landscape. The black curve is the potential-energy
landscape based on (U) in & space. The red curve is the minimum
potential energy, Unn, in & space. F,/kgT, U,/ kgT, and Upin/ kT
are as indicated. A, is the value that minimizes F'.

potential will be described below. Uy, is a quantity we can
derive analytically for each interaction potential, while U,
is determined from the simulation data. Upy, is temperature
independent, in contrast to Up, Sp, and Fj,. We wish to see
what conditions allow Sj, or U, to dominate the free-energy
barrier and also to gain some intuition about non-Arrhenius
temperature dependence in general. Note that simulation times
become nearly intractable when 8 F, = SU, + S, = 10, thus
limiting how much of the growth of the barriers we can study.

Figure 9(a) shows data for the harmonic interaction poten-
tial for R = 2.6. As R < 3, the particles must overlap at h = 0

(b] HM |
T =107

Barriers

Barriers

Barriers

10' 10’

10° 10°
(gl L

NN OO OO OO
T

Barriers

_
=)
— T
=k
ﬂ

10°28 3 32 3]?4 36 38 4

FIG. 9. Data for the potential-energy barrier and entropy barrier
for a variety of interaction potentials, temperatures, and system
sizes R, as indicated. The solid curves indicate U,,,, the theoretical
minimum potential-energy barrier. The symbols indicate measured
values (from the simulation data), connected by straight dashed lines.
The meanings of the curves are all as labeled in (a). The interaction
potentials are (a, b) harmonic (“HM”), (c, d) long-range (“LR”),
(e, f) Weeks-Chandler-Andersen (“WCA”), and (g, h) Lennard-Jones
(“LJ”).
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and thus Up, > 0. The graph shows that as T — 0, both U,
and Sj, grow. The growth of BU, is more significant, pushed
up by BUnin. This situation is analogous to model 2 from
Sec. lII C, where U, ~ Upin + %kBT and S, ~ |InT|. Given
the slow growth of S, the free-energy barrier is dominated by
U, min-

Figure 9(b) shows complementary data for the harmonic
interaction potential as a function of R at fixed T = 1072,
Given the finite range for the potential, Uy, = 0 for R > 3,
although U, > 0 as the particles overlap for some crossings.
The R > 3 case is analogous to model 3, whereas R < 3 is
analogous to model 2. The data in Fig. 9(b) show that entropy
plays a smaller role for small R, where the free-energy barrier
is dominated by the potential energy. For this interaction
potential, Upin ~ (R — 3)2 for R < 3; the data show that S, is
nearly constant as a function of R.

Figures 9(c) and 9(d) show the comparisons of entropic
barrier and potential barrier for the LR potential. For large T
or large R cases, S, > BU,. In the converse cases, the opposite
is true. As the system becomes slower with a large free-energy
barrier, the free-energy barrier is strongly determined by the
potential-energy component.

For the WCA data shown in Figs. 9(e) and 9(f), Upin goes to
zero at R = 3.245, although as before we still have U, > 0.
For the WCA potential, we see a more dramatic growth of U,
with decreasing T [Fig. 9(e)] and with decreasing R [Fig. 9(f)].
It appears that if we further shrink the system size in Fig. 9(f),
U, will eventually grow larger than S,. The growth of S, at
small R is not as strong as the growth of SUy,, and since
Up > Unpin, this further suggests that BU, will be larger than
Sp for smaller systems.

Figures 9(g) and 9(h) show the comparisons of entropic
barrier and potential barrier for the LJ potential. For high
T cases [Fig. 9(g)], Sp > BU,, with the opposite occurring
as T — 0. Figure 9(h) shows that at a fixed 7T, with
decreasing R both S, and BU, grow, with the latter growing
more dramatically. It appears that if we further shrink the
system size in Fig. 9(h), U, will eventually grow larger
than §,.

Unusual behavior is seen for the LJ potential in Figs. 9(g)
and 9(h), where U, < Up, with large R and low 7. This can
be understood given the differences between our definitions
of Up and Upip. Unin considers the difference in potential
energy between the lowest potential-energy path at the saddle
point (h = 0) and the lowest potential energy the particles
can obtain given R. The latter corresponds to a configuration
where the centers of the particles form an equilateral triangle
with side length = 2.24, corresponding to &7 = 1.94. However,
this configuration is itself an unlikely configuration, and, for
example, when & = 1.94 the three particles will often be in
a configuration with slightly higher potential energy than the
absolute minimum. This is essentially the same argument
put forth in Sec. IIIC, that the average potential energy
experienced by the system is not the minimum value. Thus, the
measured potential-energy difference U, will often be between
a slightly higher value for both 7 =0 and & = hy,;,, such
that their difference U, = U(0) — U(hpin) < Unin. This 1is
not the case for the other interaction potentials, probably
because the potential energy is a flatter function of /4 around
hmin for the other interaction potentials.
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FIG. 10. The potential barrier and entropy barrier for (a) the
harmonic interaction potential and (b) the WCA interaction potential.
The system sizes R are as indicated and chosen such that the minimum
potential-energy barrier iS Upin = 0. The horizontal dashed lines
indicate the free-energy barrier for the hard-disk case.

Some general conclusions can be drawn from all of the data
of Fig. 9. First, in most of the cases, U, > Up;,, confirming
the intuition from Sec. III C: that crossing the saddle point
in the potential-energy landscape is not typically done at
the minimal potential-energy path through that saddle point.
Second, Figs. 9(a), 9(c), and 9(e) demonstrate that BU;, and
Sp both depend on T and are larger for colder temperatures:
and thus these barriers behave non-Arrheniusly. In particular,
these barriers are not simply based on SUpy.

The finite-ranged potentials (harmonic and WCA) allow us
to look at cases where Up;, = 0. As noted in the discussion
of Figs. 6(a) and 6(b), when Up, = 0O the free-energy barriers
reach a plateau as T — 0 corresponding to the hard-disk limit
(the horizontal dashed lines). The data for the energy and
entropy barriers are shown for two of these cases in Fig. 10.
These data match the qualitative behavior predicted by model
3 (Sec. lIIC). Atlow T, BU, ~ 0 and S, approaches the hard-
disk result. At high 7,8U;, ~ % and the entropic contribution
decreases as more microstates are possible at & = 0. For
different temperatures, the tradeoff between crossing with
zero or finite potential-energy changes, due to the entropic
penalty of choosing the zero potential-energy pathway, which
is weighted by the temperature.

IV. CONCLUSIONS

We studied a free-energy landscape of a simple model
possessing some qualitative features of a glass transition.
The model’s slow dynamics are governed by a free-energy
barrier which we directly measure in simulations. The barrier
height is determined both by entropy and potential energy. The
relative contributions of each of these depend on temperature
T. In particular, for fixed system size R, the potential-energy
landscape is independent of T, yet the effective potential-
energy barrier height, entropic barrier height, and overall
free-energy barrier all depend on 7. This leads to non-
Arrhenius temperature dependence. In particular, the entropic
contribution dominates the free-energy barrier height for
cases with finite range potentials at lower densities (larger
system size R), as shown in Fig. 10. Even in cases with
long-range potentials and smaller system sizes, entropy still
plays a nontrivial role, as shown in Fig. 9. We have argued
that for many of these cases, potential energy will dominate
the free-energy barrier as 7 — 0; nonetheless, the entropic
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contribution is still significant at temperatures for which the
system is already extremely slow.

We conjecture that with more particles, entropy plays an
even more important role in cooperative rearrangements, as
suggested in 1965 by Adam and Gibbs [34] and discussed by
many authors subsequently. In fact, our model is in the spirit of
Adam and Gibbs, in that rearrangements require coordinated
motion of all three particles [Fig. 1(b)], resulting in an entropic
penalty.

There are qualitative differences between our results and
non-Arrhenius behavior seen in glass-forming systems. First,
the onset of slow dynamics in our model requires temperature
changes of several orders of magnitude (Fig. 6), whereas
similar changes in glassy materials require a temperature
decrease of only 10-20% [1-4,28]. Second, in our model,
as T — 0, the potential-energy component of the barrier may
become more important than entropy, suggesting a recovery
of Arrhenius behavior at the lowest 7' (Fig. 9), whereas in
glassy materials the most pronounced non-Arrhenius behavior
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is seen at the coldest temperatures. However, the recovery of
Arrhenius behavior is not completely clear from our data as
the 7 — O limit requires prohibitively long simulation runs.
Both of these differences between our simple model and glassy
behavior might disappear for larger numbers of particles, but
then we would lose the ability to fully visualize the free-energy
landscape (Fig. 2). It is certainly known that near the glass
transition, rearrangements can involve far more than three
particles [23,24], which would likely enhance the temperature
sensitivity. While we do not model the N — oo limit of a glass
transition, we have demonstrated connections between the
free energy landscape, free energy barriers, and non-Arrhenius
temperature dependence in our model glassy system.
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