Decoupling of rotational and translational diffusion
in supercooled colloidal fluids
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We use confocal microscopy to directly observe 3D translational and
rotational diffusion of tetrahedral clusters, which serve as tracers in
colloidal supercooled fluids. We find that as the colloidal glass
transition is approached, translational and rotational diffusion
decouple from each other: Rotational diffusion remains inversely
proportional to the growing viscosity whereas translational diffu-
sion does not, decreasing by a much lesser extent. We quantify the
rotational motion with two distinct methods, finding agreement
between these methods, in contrast with recent simulation results.
The decoupling coincides with the emergence of non-Gaussian
displacement distributions for translation whereas rotational dis-
placement distributions remain Gaussian. Ultimately, our work dem-
onstrates that as the glass transition is approached, the sample can
no longer be approximated as a continuum fluid when consider-
ing diffusion.

Rapidly cooling a glass-forming liquid fundamentally changes
the nature of fluid transport at a molecular scale (1-7). For a
tracer in a continuum fluid, the translational and rotational dif-
fusion coefficients Dt and Dg, respectively, depend on tempera-
ture 7T and viscosity n as D « T/n. Therefore, the ratio Dy/Dxy is a
constant that is independent of both T and #. However, this re-
lationship breaks down in the deeply supercooled regime near the
glass transition, according to experiments with molecular glass
formers and also molecular dynamics simulations (1-3, 8-14).

Experiments with glass-forming materials find that rotational
diffusion remains strongly coupled with viscosity, where Dr «
n~', whereas translational diffusion decouples, developing a
fractional dependence on # where Dt « 1% with £ < 1 (2, 8, 15).
Near the glass transition, Dt can be enhanced by two orders of
magnitude over what would be calculated from the material’s
viscosity. The rotational diffusion coefficients from these experi-
ments are inferred from measurements related to molecular
rotations, and are evaluated using the “Debye model” due to an
inability to directly observe molecular rearrangements in a mate-
rial’s bulk (3, 8-10, 16, 17). This experimental limitation has in-
spired computational studies where diffusion can be calculated
using the Debye model and also a complementary method, the
“Einstein formulation,” which is more directly related to the
trajectories of the diffusing objects. These simulations studied
pure systems of water (9), ortho-terphenyl (10), and hard dumbbell
particles (11). Intriguingly, the simulations found that decoupling
depends qualitatively on the analysis method: They find rotational
motion is enhanced over translational motion when quantified
with the Einstein formulation, with the opposite being true in the
Debye formulation. The results from these simulations raise the
need for a critical reexamination of our current understanding of
the relationship between translational and rotational diffusion,
and only through direct observation can these differences be
addressed (10). Unfortunately, there has been no direct experi-
mental observation of diffusive decoupling in a 3D system which
would allow for these findings to be tested.

We use high-speed confocal microscopy to directly visualize
the 3D translational and rotational motion of tetrahedral tracer
colloidal clusters in a dense amorphous suspension of colloidal
spheres. A glass transition occurs as the colloidal suspension’s
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volume fraction is increased above the value of ¢g ~ 0.58 (18,
19). We observe that as the glass transition is approached from
¢ < ¢c, the long-time rotational diffusion of the tracers decreases
proportionally with the bulk viscosity 5, whereas long-time trans-
lational diffusion decreases by a much lesser extent, similar to
observations made with molecular glasses (2, 8). Moreover, we
quantify the rotational motion in several ways, and find that all
rotational observations remain proportional to 4. Our results are
in contrast with the aforementioned results from computer sim-
ulations (9-11), where the details depend on the analysis method,
and rotational diffusion was either apparently enhanced or sup-
pressed depending on the analysis. Our results persist regardless of
the analysis used to characterize diffusion. Direct comparison
between our results and those of computer simulations is prob-
lematic, given that they studied pure liquids whereas we study
tracers; these differences are evaluated in the Discussion.
Colloidal suspensions provide an insightful avenue for exper-
imentally exploring the glass transition (18-22). The key control
parameter is the volume fraction ¢, rather than temperature. As
¢ increases, colloidal microspheres exhibit phase behavior that is
in good agreement with the hard-sphere model (18, 19). Hard
spheres are arguably the simplest system in which to study the
most fundamental features of the glass transition. An important
advantage of colloids is that individual particles can be followed
in 3D using a confocal microscope, which permits direct observa-
tion of the complex dynamical processes of individual particles (22—
25) that can be difficult to study with more conventional methods
that average over many particles within the sample’s bulk (2, 16).
Steric effects are key to understanding the colloidal glass tran-
sition: Particles cannot overlap one another, complicating their
motion in a dense sample. For one sphere to move, its neighbors
must move out of its way, and their neighbors must move out of
their way, etc. This leads to large-scale rearrangements involving
many particles (22, 25-27). In contrast, rotation of spheres is
possible without colliding with neighboring particles. Rotation of
optically anisotropic colloidal spheres has been studied (28-31).
These rotations do slow near the colloidal glass transition, but due
to hydrodynamic interactions rather than steric interactions. For
this reason, in dense suspensions of spheres rotational diffusion is
faster than translational diffusion (30); this is discussed further in
Materials and Methods. The hydrodynamic slowing of rotational
diffusion, while interesting in its own right, cannot speak to the
question of slowing rotational diffusion in molecular glasses.
Therefore, we use a dispersion of isolated nonspherical particles
in a suspension of spherical particles. This is a simple physical model
system in which to study rotational and translational diffusion near
the glass transition. Our nonspherical tracer particles, developed
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Fig. 1. Visual representations of a colloidal tetrahedral cluster. Only the core
of each particle is fluorescently labeled, surrounded by a blank undyed shell of
PMMA, making each particle visually distinct from its clustered neighbors. (A)
Composite, imaged using a confocal microscope and calculated by taking the
mean of a 3D image. The composite images allow us to see through the cluster,
where the overlap between multiple particles appears black. (B) Three-di-
mensional reconstruction. (C) Three-dimensional rendering of spheres at the
centers of the particle coordinates, as determined by our tracking algorithms
(38, 41). Sphere diameters are roughly equal to that of the fluorescent cores.

through recent advances in colloidal science (32), are highly or-
dered clusters of colloidal particles (33). A confocal micrograph of
one such cluster with corresponding 3D representations is shown in
Fig. 1. The rotational motion of such clusters is hindered by colli-
sions with neighboring spherical particles, and thus is a reasonable
model of steric hindrances within molecular glass-forming systems.
At short time scales, hydrodynamics are still expected to be im-
portant (30, 31); however, we focus on the long-time dynamics, for
which the steric hindrance should be most significant (34-37).

With a recently developed means of tracking motion of such
clusters (38), we are in a position to simultaneously study trans-
lational and rotational diffusion of anisotropic tracers in glassy
and otherwise densely packed systems. Our system can be thought
of as a 3D analog of samples used in very recent colloidal ex-
periments, where rotational diffusion was studied in dense 2D
samples of colloidal ellipsoids, with aspect ratios of ~1.1 (39) and
~6.0 (40). We follow the full 3D motion of our clusters, allowing
us to observe rotations around any axis without any ambiguity, as
discussed in Materials and Methods.

Results

We track the translational and rotational diffusion of the tracer
particles in 3D (38, 41). A selection of respective trajectories is
shown in Fig. 2. The random translational and angular Brownian
motion of a particle is characterized by corresponding diffusion
coefficients. For an arbitrary 3D object possessing no special sym-
metries, there are three translational and three rotational diffusion
coefficients. Because of its high symmetry, however, the diffusive
motion of a tetrahedron is characterized by only one translational
and one rotational diffusion coefficient (42). Therefore, we can
quantify the tracer mobility in this system using only the mean-
square displacement (MSD) of the center of mass and the mean-
square angular displacement (MSAD) as described below.

The MSD, plotted in Fig. 34, grows in time without bound ac-
cording to the relation

(87 (an)) = <[7(r+m)-7(r)]2> [1]
Alti_rgo<AF2(At)> = 6DrAL. 2]

Here, 7(t) is the position of the tracer particle center of mass at
time ¢, and the angle brackets indicate averages over all initial
times ¢. Thus, we obtain the translational diffusion coefficient Dt
from a measurement of the MSD. The “Einstein formalism” for
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rotational motion is an analogous method of quantifying rota-
tional motion of a unit vector @, which we define as an orien-
tation vector that extends from the cluster’s center to an arbitrary
initial direction (9). The cross-product u(¢) x u(t + At) gives the
direction of the instantaneous axis of rotation for a vector rota-
tional displacement A¢(f), whose magnitude is given by |Ag(t)| =
cos~H(@(t) - (¢ + Af)). We can define the total angular displace-
ment with the following integral (9):

t
P@t) = /0 Ap(r)dr'. 3]

The unbounded MSAD is then given by

(a7(@a0) = ([ge+20-50)]) 4]
Alli_rgo<Ag?)2(At)> = 4DRAf, [5]

analogous to the MSD defined in Eq. 1. Thus, we obtain a mea-
surement of the rotational diffusion coefficient Di as well as a
direct comparison between the MSAD and MSD. If the rotational
trajectory is considered only about a single axis of rotation, sig-
nificant motions may be overlooked. Therefore, we consider four
orientation vectors u, each extending from the cluster’s center to
the center of each of the clustered particles. We evaluate the
MSAD:s for each vector and then calculate their mean: The MSAD
is the average of the four orientation vectors. We plot the MSAD
in Fig. 3B. Note that the data for ¢ ~ 0.51 are from a pentamer, n =
5 particles arranged as a triangular dipyramid (33); for these data
we average over five orientation vectors. The pentamer’s motion
follows the same trend as seen for the tetrahedra, as quantified by
the MSD and MSAD, despite its break in symmetry.

We determine Dt and Dgr by finding the slope over the
moderate-to-large At regimes of the MSD and MSAD curves;
the exact procedure is described in Materials and Methods. We
plot Dt and Dy on shared axes in Fig. 4 in terms of both ¢ and
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Fig. 2. Translational and rotational trajectories for clusters at different ¢.
(Upper) Two-dimensional projections of 3D trajectories of the center of mass
of clusters. (Lower) Rotational trajectories depicted by a trace of a cluster’s
orientation across the surface of a unit sphere in the cluster’s translating
frame of reference. Each trajectory spans a duration of 3000 s. The trans-
lational trajectories only share the same set of axes for comparison and are
each from a unique sample.

Edmond et al.


www.pnas.org/cgi/doi/10.1073/pnas.1203328109

L T

/

D\

A
10° F———rrrrm
L 4 00 1
+ 039 ]
» 040 4
< 044 4
— 1 v 045
<< 10'F < oo |
E L o 054 ]
s . (0.56 ]
L. ]
2 .0 .
10" ¢ 4 3
. ]
10'1 T RPN | il i
B 1
10 E T ML | T T "é‘
10°¢ 3
&« ]
© 1 /M ]
S107F .- o %
= N A | 1
(3] 4
S .
N 107 ° X.-_ 5
‘ o ) ]
3 'Oﬁ. 1
107 e " 3
al ]
10 n sl n +oaa el n sl n
10° 10 10° 10° 10*

At(s)

Fig. 3. Translational and rotational mobility for range of volume fractions
@. (A) MSD (Ar?(At)). (B) MSAD (A@?(At)). The open symbols are from a
pentamer cluster, the closed symbols are from tetrahedra. The solid straight
lines show a slope of 1 and indicate the measured value of Dy or Dg. Un-
certainty due to optical noise varies between each data set: Data for ¢ ~ 0.56
are noisier than for ¢ ~ 0.50 and 0.54. Data below the noise floor are not
plotted (38). The deviations from slope = 1 seen at large At values are due to
lack of data; this is discussed in Materials and Methods.

the sample viscosity 7, where 5 has been interpolated from data
reported in ref. 43, which studies monodisperse particles. The
viscosities of our bidisperse mixture could be a factor of 2 less
for ¢ ~ 0.50 (44).

As can be seen, the data in Fig. 3 do not perfectly follow the
slope = 1 lines, and the resulting uncertainties in the determi-
nations of the diffusion coefficients are reflected in the error bars
in Fig. 4. Rotational diffusion remains coupled with 5 for the full
range of ¢, whereas translational diffusion decouples for ¢ >
0.51. Numerous experiments and simulations have found that Dy
in supercooled molecular glass formers scales with ~ 7%, where
0.73 < £ < 0.87 depending on the specific type of material (2, §,
45). For comparison, we include lines with slopes of —0.73 and
—0.87 in Fig. 4. The decoupling is clear: the difference between
Dt and Dg is well above our uncertainty level. In our densest
samples, the ratio D/Dg is about 25 times larger than its value at
¢ ~ 0. The diffusion coefficients for the pentamer, denoted by
the open symbols in Fig. 4, are slightly lower than the trend set by
data for tetrahedra, which is sensible as the pentamer will diffuse
slower than the smaller tetrahedra.

Alternatively, as discussed, we can calculate the rotational
diffusion using the “Debye formalism,” which is analogous to
what is measured from molecular glass formers using dielectric
relaxation and related methods (2, 16). Again, consider the unit
vector u pointing from the cluster’s body center to one of the
particles in the cluster. One can define the reorientational time-
correlation function Creor(Af) = (U(t+ Af) -a(2)) (16). In a simple
liquid, this decays exponentially with Af as Cieo(Af) = exp
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[-2DRAt]. The values of D measured in this way from our data
are indicated by the squares in Fig. 4, showing excellent agree-
ment with the MSAD results. Again, we average over all four
unit vectors u for each tetrahedron.

We find a significant difference between the distributions of
rotational and translational displacements. Rotational displace-
ments are defined by Eq. 3 as A@(Ar) =|¢(t+ At) — §(¢)|. In all
cases, the distributions of rotational displacements are Gaussian,
whereas the distributions of displacements Ar(Af) show marked
non-Gaussian tails for ¢ > 0.5; see Fig. 5. That is, relatively large
displacements A7 are rare, but not as rare as would be expected
based on fitting a Gaussian to the more common smaller dis-
placements. The largest displacements in Fig. 5C are on the order
of 2 um, roughly the diameter of a single particle, which is sig-
nificant within a crowded environment of bidisperse particles (46).
Non-Gaussian distributions are frequently seen for displacements
in supercooled liquid samples (2, 12, 22, 26) and have also been
seen for rotational displacements in simulation (9, 10). These
distributions are typically associated with trajectories dominated
by cage trapping and cage rearrangements, with the large dis-
placements corresponding to the latter (12, 13, 22). We do not see
obvious cage-rearrangement events in the trajectories (Fig. 2). It is
possible that these events are obscured due to the somewhat larger
size of the tracer particle compared with the bath particles (47).

The distributions of Fig. 5 raise the question of how the
translational and rotational displacements relate to each other
(30). In Fig. 6 A and B we show scatter plots of these two types
of displacements. The horizontal and vertical dashed lines indicate
the mean values of Ar and A¢, so points in the upper-right quad-
rant correspond to large displacements of both types. For both the
low volume fraction data (4, ¢ = 0.393) and the high volume
fraction data (B, ¢ = 0.540), there are often times when both Ar
and Ag are large. However, this seems to occur slightly more often
for the higher volume fraction: there are significantly more points

¢ (%)
0.0 322 450 511 538 555 56.8
?\ A D, E
FooA, D,
] 072 o . TI‘a D, (Debye Method) ] 073
G Q
NE [ D,/ D, (umirady’ Ng
SR ey s &
10 F 10
Qo Q
100 k-
3 10 bg
: o%o 0%2 0%4 o%e ¢
10-8 -3 — H““1-2 — H““1-1 — H““10 — H““11 10-7
10 10 10 10 10

n(Pas)

Fig. 4. Diffusion coefficients of tracer clusters for different n and ¢. The
values of 5 (Lower) are interpolated from the data published in ref. 43 using
our own ¢ values (Upper). Both vertical axes have the same scale but have
been shifted to overlap the coefficients at ¢ = 0.0. Blue triangles: trans-
lational diffusion coefficients Dy (Left axis). Orange circles: rotational dif-
fusion coefficients Dg (Right axis). Open symbols: data from a pentamer, n =
5 particles arranged as a triangular dipyramid (33). Light orange squares:
rotational diffusion coefficients calculated using the Debye formalism.
Dashed and dotted lines show, from bottom up, ™", 7%, and %73 de-
pendencies. (Inset) Ratio between diffusion coefficients. The horizontal
dashed line is the zero-concentration diffusivity ratio ?T; = 4/3a%, where a is
the tetrahedral cluster’s effective radius, and the vertical line is ¢g ~ 0.58.
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Fig. 5. Distributions for translational and rotational displacements. (A and
C) Data for translational displacements (Left). (B and D) Data for rotational
displacements (Right). (Upper) ¢ = 0.39, with At =35s; (Lower) ¢ = 0.54, with
At = 181 s. For both, At is chosen so that (r?) = 1.0 pm2. The solid lines are
Gaussian fits. For comparison, we include the fit from A in C as a dashed line.

in the upper-right quadrant than in the lower-right quadrant of
Fig. 6B. This trend is quantified in Fig. 6C, which shows the
correlation coefficient between the two types of displacements
as a function of volume fraction. The amount of correlation in-
creases with increasing ¢. This is counterintuitive, given that the
diffusion constants D7 and Dy are decoupled. This implies that in
these dense samples clusters are somewhat likely to simulta-
neously translate and rotate, but as ¢ — ¢ the amount of rotation
decreases more strongly than the amount of translation. Fig. 6C
also shows that for longer lag times At (corresponding to larger
MSDs (Ar?), as given in the legend), the correlations decrease.
Overall, this suggests that the tracers translate and rotate via short
steps that are slightly correlated, and at long times the accumu-
lation of these short steps is less correlated.

Discussion

One source of difference between our results and those of sim-
ulations is our use of a somewhat large rotational tracer within a
fluid of smaller spherical particles, whereas simulations study
pure liquids (9-11). Other molecular dynamics simulations in-
vestigated the use of tracer particles to probe sample dynamics
(47, 48). These simulations varied probe size and determined that
probes much larger than the bath particles modify the motion of
nearby bath particles, which in turn modify the observed behavior
of the probe particle (47). Likewise, experiments with molecular
probes in polymer materials have found that the probe’s size and
shape can have a strong effect on translational diffusion (3, 14).
Individual spheres within one of our clusters are close to the bath
particle sizes; the cluster overall is ~2.4 times larger than the
larger bath particle size. This may result in slower motion of the
probe particle than the rest of the sample, given that our probes
are “rough” (47, 48). Nonetheless, because the probe is not too
much larger than the bath particles, it is still qualitatively linked to
the bath particle dynamics. We have focused our attention on the
long-time diffusive motion, which should be more coupled to the
bath particle dynamics than short-time motion.

An additional point of contrast is the tracer’s shape; where we
use a relatively isotropic tetrahedral cluster, simulations typically
use more anisotropically shaped particles such as linear dumb-
bells (11) or planar isosceles triangles (9, 10). It is possible that
these shape differences account for the differences between our
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observations and the simulations; experiments have shown that
tracers with different shapes can have different translational dif-
fusion (14). Anisotropically shaped probes exhibit a characteristic
change in the mechanism of reorientation, from consistently small
random steps to well-separated and sudden changes of orientation
(10). Large sudden angular displacements produce non-Gaussian
distributions of displacement, analogous to translational cage-
trapping dynamics seen in dense suspensions of colloidal micro-
spheres (10, 22). Conversely, the decoupling in our experiments
coincides with the emergence of non-Gaussian displacement dis-
tributions for translation, whereas rotational displacement dis-
tributions remain Gaussian. Our results show that the decoupling
of translational and rotational diffusion occurs even with more
isotropic tracer probes, as long as there are steric interactions
inhibiting rotational motion.

Ultimately, the existence of decoupling between translational
and rotational diffusion in our simple model system, composed of
spherical “bath” particles with nonspherical tracers, demonstrates
that decoupling is a generic feature of glass formers that results
from crowding. As the bath particle volume fraction ¢ is increased
toward the glass transition, decoupling between translational and
rotational diffusion begins around ¢ ~ 0.50, still somewhat far
from the glass transition at ¢ ~ 0.58. At the largest volume
fraction we have studied (¢ ~ 0.56), the ratio of D1/Dx is 25 times
larger than it is at low volume fractions. The nature of decoupling
observed here is in good agreement with measurements from
molecular glass formers (2, 8). This agreement is suggestive that a
wide variety of systems can exhibit decoupling. Our results clearly
demonstrate that the fundamental nature of diffusion is changed
near the glass transition: Whereas approximating the material as
a continuum fluid is reasonable far from the glass transition, this is
no longer possible close to the glass transition.

Materials and Methods

Sample Preparation. Our colloid is a suspension of spherical colloidal poly
(methyl methacrylate) (PMMA) particles, sterically stabilized by a thin layer of
poly(12-hydroxystearic acid) (49, 50) to prevent interparticle attraction. To
prevent crystallization we use equal volume fractions of two particle species
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Fig. 6. Correlations between translational and rotational displacements. (A)
Scatter plot of Arand Ag, for ¢ = 0.393, (Ar?) = 1.0 um?, At = 35 5. Ag corre-
sponds to the total rotation over each time interval. Horizontal and vertical
dashed lines indicate the mean value of each type of displacement. (B) Similar
for ¢ = 0.540, (Ar?) = 1.0 pm?, At = 181 s. (C) Correlation between Ar and Agp
as a function of volume fraction, using At defined such that (Ar%) has the
value indicated by the legend. For low ¢, we do not take data quickly enough
to see (Ar%) = 0.5 pm?, so no values are plotted in such cases.
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(51), 750 and 1050 nm in radius, with a polydispersity of 2.5% for each
species. The particles are suspended in a mixture of ~87/13 (wt/wt) cyclo-
hexyl bromide (CHB, Fluka, 99%) and cis-decahydronaphthalene (cis-decalin
or DEC, Aldrich, 99%), which effectively matches both the density and index
of refraction of the particles. To screen the repulsive charge between the
particles, we saturate the solvent mixture with ~190 pM of tetrabuty-
lammonium bromide (Aldrich, 98%) (52).

We add a trace amount of PMMA colloidal clusters, already suspended in
a similar CHB/DEC mixture, synthesized using the method developed by
Elsesser et al. (32). The particles in each cluster are 1300 nm in radius with
2.5% polydispersity, according to both static light-scattering measurements
and calculation of diffusion coefficients using optical particle tracking
techniques (32, 38, 41). Although the clustered particles stick together with
van der Waals attractions, the clusters are stable and do not aggregate with
other particles in even the most dense suspensions, as verified by bright-field
microscopy. Only the cores of the clustered particles are fluorescently la-
beled (32), making the clusters easily visible among the rest of the colloid,
which is invisible under fluorescent microscopy. The relatively poor z reso-
lution of optical microscopy makes labeling only the particle cores a neces-
sity to clearly distinguish the clustered particles from one another. Images of
a coreshell cluster are shown in Fig. 1.

As described in the Introduction, we use clusters so that they sterically interact
with the rest of the sample. Studies of colloidal spheres found that rotational
diffusion is faster than translational diffusion (30, 31). In a colloidal suspension
the spheres interact hydrodynamically, which acts to slow their rotational
motion, essentially the same as how their motion is slowed near a wall (53, 54).
That is, as the sample concentration is increased, spheres become closer to
their neighbors, which results in slower rotational diffusion (as well as
slower translational diffusion seen at short time scales, before particles have
collided with one another). However, these hydrodynamic effects slow ro-
tational diffusion by perhaps a factor of 5 (30, 55, 56), not nearly comparable
to the orders of magnitude by which translational diffusion slows.

Samples are prepared by filling rectangular glass capillaries (VitroTubes,
0.10 x 2.0-mm i.d.) that are sealed with optical adhesive (Norland #68). In
between the preparation of each sample, we incrementally dilute the col-
loid using the original supernatant, producing samples with 0.39 < ¢ < 0.56.
We determine the value of ¢ for each sample by recording the mass of the
colloid before and after each dilution, and then calculating the colloid’s
final ¢ by massing it with and without solvent (57). The values of ¢ are
correct relative to each other within +0.002 from this method and thus are
reported to three significant figures in our work. However, there is an
overall systematic uncertainty of +£3% from this method, which should be
considered when comparing our results to those of simulations or other
experiments (57).

Data Acquisition. We locate individual tetrahedral clusters within the colloid, far
from other clusters and at least 35 pum from the nearest boundary to avoid wall
effects. We image the clusters using a Leica TCS SP5 confocal microscope,
equipped with an argon laser (Ao = 514 nm) and an oil-immersion objective
(Leica, 63x, 1.4 N.A.). A 25 x 25 x 25-um® volume is scanned in 0.8 s with a pixel
size of ~100 nmin xand y and 200 nm in z. The lag time At between each scan is
adjusted from At = 10 to 45 s depending on the volume fraction of the sample.
We set the frequency of data acquisition such that the particles displace no
more than a radius between successive acquisition times, and typically far less
than this. On these time scales, rotations are quite small and never more than
7/6 radians (for example Fig. 5), making it clear that we do not miss any sudden
large rotations that might be closer to 2x. For comparison, in a dilute sample
our tetrahedral clusters translate a distance comparable to the cluster radius
(2.6 um) on a time scale of 20 s, and rotate by = radians on a time scale of 440 s
(using Egs. 1 and 4). The result of a typical confocal scan of a diffusing cluster is
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shown in Fig. 1A. Whereas the cluster in Fig. 1 is imaged in a clear open volume
of solvent, index matching of the colloid provides comparable image quality
from even the most densely packed samples.

Tracking Cluster Trajectories. We identify the horizontal and vertical positions
of the individual particles within a cluster to an accuracy of 0.02 and 0.04 pm,
respectively, for the duration of the experiment (41). The center of mass for
a cluster is found from the mean of the four individual particle positions,
and so this center has an accuracy of 0.01 pm horizontally and 0.02 pm
vertically. We plot the center-of-mass trajectories of tetrahedra for different
¢ in Fig. 2. To determine the cluster’s orientation we follow the method
described in (38). First, we define the unit vectors G pointing from the
cluster’s body center to the center of each of the particles in the cluster. We
then follow the orientation of these vectors at each successive time, thereby
mapping out the rotational trajectory of the cluster. We illustrate cluster
orientations in Fig. 2 as traces of the tip of one of these unit vectors on the
surface of a unit sphere.

Determining Diffusion Coefficients. From the data, MSDs are calculated using
Egs. 1, 3, and 4; these are shown in Fig. 3. The MSAD data for the three highest
volume fractions have small displacements at short time scales, which run into
issues with noise. Noise results in an additive constant independent of At, so
for these three MSAD curves we plot (Ap*(At))true ~ (AP*(A))measured — €
following the method of (57). c is estimated by inspection of the data along
with the noise estimation techniques relevant for our rotational tracking
method (38).

All MSD and MSAD curves in Fig. 3 are noisy as each comes from a single
tracer particle. For diffusive behavior one would expect these curves to have
a slope of 1 on the log-log plots of the figure. In samples near the glass
transition in particular, at very short time scales (At < 1 s for these samples)
the behavior would be diffusive, at intermediate time scales there might be
a plateau in the MSD curves (slope less than 1 on a log-log plot), and at long
time scales the behavior would again be diffusive, albeit with a much smaller
diffusion constant (but recovering a slope of 1 on a log-log plot) (22). All our
data in Fig. 3 appear to be in this long-time regime, with some hints of
a plateau seen only at the shortest time scales plotted, and only for some
volume fractions. In general this is because of our interest in studying the
long-time dynamics, and the experimental need to avoid photobleaching of
the tracers thus motivating us to take images at longer time intervals only.
As noted in the Introduction, the short-time regime should be dominated by
hydrodynamics and Brownian motion, whereas the long-time regime should
be influenced only by steric effects and independent of the short-time dy-
namics (34-37). It is also possible that the plateau is below our noise level;
data below our noise level are not plotted in Fig. 3.

To determine the long-time diffusion constants from these noisy MSD and
MSAD curves, we (by hand) determine the best diffusion coefficient con-
sistent with each curve. In practice, the best data come from intermediate At's
as the long-time behavior of the MSDs has poor statistics (57). (A trajectory
5,000 s long has 10 independent instances of At = 500 s and only one in-
stance of At = 5000 s. The noise seen at long At in Fig. 3 is consistent with
simulations of a single Brownian tracer with a similar finite duration tra-
jectory.) These diffusion constant fits are indicated by straight lines in Fig. 3,
and the uncertainty due to the noisy MSD curves is reflected in the error bars
on the diffusion constants shown in Fig. 4.
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