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Clogging and avalanches in quasi-two-dimensional emulsion hopper flow
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We experimentally and computationally study the flow of a quasi-two-dimensional emulsion through a
constricting hopper shape. Our area fractions are above jamming such that the droplets are always in contact
with one another and are in many cases highly deformed. At the lowest flow rates, the droplets often clog and
thus exit the hopper via intermittent avalanches. At the highest flow rates, the droplets exit continuously. The
transition between these two types of behaviors is a fairly smooth function of the mean strain rate. The avalanches
are characterized by a power-law distribution of the time interval between droplets exiting the hopper, with long
intervals between the avalanches. Our computational studies reproduce the experimental observations by adding
a flexible compliance to the system (in other words, a finite stiffness of the sample chamber). The compliance
results in continuous flow at high flow rates, and allows the system to clog at low flow rates leading to avalanches.
The computational results suggest that the interplay of the flow rate and compliance controls the presence or
absence of the avalanches.
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I. INTRODUCTION

Many slowly strained materials exhibit intermittent flow
behavior: long still periods punctuated by rapid avalanches
where material flows [1–5]. Examples include diverse phe-
nomena such as earthquakes [6,7], general deformations of
solids [8], stick-slip friction due to granular layers [9–11],
Barkhausen noise in magnetic materials [12], and sheep
herded through constrictions [13]. For athermal soft materials,
avalanches are seen in slow flows of materials such as emul-
sions [1], bubble rafts [14], foams [4,15–18], and granular
materials [19–25]. These soft materials typically have amor-
phous structure, necessitating that flow and rearrangements
are disordered on a microscopic scale. The slow flow speed
is a key feature: for example, a rotating drum experiment with
sand inside demonstrated avalanches at low rotation rates and
smooth flow at high rotation rates [26]. For granular materials,
static friction can prevent the material from flowing and can
lead to avalanches. In systems composed of fluids such as
foams and emulsions, stresses are supported not by static fric-
tion but rather surface tension, which resists the deformation
of the bubbles or droplets.

Hopper flow is a useful case study for these types of
flowing particulate materials. In this geometry (Fig. 1), the
material starts in a wide channel but then exits the chamber
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through a narrow orifice. This is of industrial interest for stor-
age of granular materials [27,28] and has been long studied
scientifically. For example, an early paper in 1929 examined
hopper flow of various granular materials and observed that
flow halted when the exit orifice diameter was less than about
four particle diameters [29], which has been observed many
times since [30–33]. Subsequent work found that for small
exit orifices, the flow rate fluctuates as small arches form and
break near the exit [34,35]. For larger exit orifices, the flow
rate is smooth and generally a simple function of the orifice
size and various material parameters [28,30,31].

In this paper, we present experimental and computational
studies of hopper flow of emulsion samples. Our experimen-
tal emulsions are oil droplets in water and are compressed
between two parallel glass plates so that the droplets are
deformed into pancakelike disks. The area fractions are all
above jamming [15]. Our exit orifices are all small (∼4 droplet
diameters across). We drive the flow with a pump, and given
that our droplets are deformable, they cannot permanently
clog at the exit. We see a range of flow behaviors. At the
slowest flow rates, the flow pauses for long periods of time
broken up by large avalanches of rearrangements. At higher
flow rates droplets exit continuously. Intriguingly, the transi-
tion between the two flow behaviors occurs fairly smoothly
as the flow rate is increased, and at moderate flow rates we
see an intermediate type of flow behavior. The nonconstant
flow seen in the experiment is in contrast with the constant
flux driving condition at the pump, indicating that the system
has compliance: rather than being infinitely rigid, the system
expands under pressure. Our computational studies address
this using the Durian bubble model [4,36], modified to mimic
our experiment and with the effects of an added compliance.
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FIG. 1. Schema of our sample chamber (left) and raw image of
the emulsion flowing in the +x direction (right). The hopper angle
θ = 54◦ ± 5◦.

The simulations show the same results as the experiment: at
lowest driving, the simulated compliance results in clogging
and avalanches; for larger driving, we see a smooth transi-
tion to continuous flux. Our results highlight the interesting
influence of compliance on the behavior of these flowing soft
particles.

II. METHODS

A. Experimental samples and sample chambers

Our emulsions are mineral oil droplets in water using
Fairy dish detergent (mass fraction 0.025) as a surfactant to
prevent coalescence of the droplets [37,38]. The droplets are
produced using a standard coflow microfluidic technique [39].
The radius polydispersity of our droplets is 1% (standard
deviation divided by mean). To prevent droplets from orga-
nizing into crystalline arrays, for each experiment we make a
bidisperse emulsion by mixing together two separate batches
of monodisperse droplets at a volume ratio of about 1:1. While
each individual batch of monodisperse droplets has a low
polydispersity, there is some variability between batches. The
mean diameter of the large droplets is 270 ± 50 μm and of
the small droplets is 200 ± 40 μm, and the diameter ratios
of the bidisperse mixtures we form are in the range dL/dS =
1.5 ± 0.2.

In our experiment, we confine droplets between two 25 mm
× 75 mm glass slides. The slides are separated by pieces of
100 μm transparency film sealed with epoxy. These pieces of
film act as spacers and thus create a gap between the slides.
This gap ranges from 115–140 μm in different experiments.
This range is mainly due to the different amount of epoxy ap-
plied when making each chamber. Nonetheless, within a given
sample chamber, this gap is constant with uncertainty 1.8%
within any given sample chamber so the slides are parallel
(the corresponding maximum angle between two slides is less
than 1◦). Sample chambers for which this was not true were
discarded. While the gap thickness varies from experiment
to experiment, our prior work found that the thickness was
unimportant as far as the contact forces droplets exert on one
another when they contact [37]. In all cases, the diameters of
the oil droplets are chosen to be larger than the gap of the
sample chamber. Thus, the droplets are squeezed between the
two glass slides to achieve a quasi-2D system.

The left panel in Fig. 1 shows the schema of the cham-
ber. The pieces of film are cut to form a symmetric hopper

channel with angle θ = 54 ± 5◦ (see Fig. 1) and opening
width 0.7–1 mm. The sample chamber is tilted at an angle
5 ± 1◦ relative to the horizontal, to use the buoyant force of
the droplets to balance the viscous friction between droplets
and glass slides at intermediate flow rates. The buoyant force
is due to the density difference between water and mineral
oil (ρwater = 1.00 g/cm3, ρoil = 0.83 g/cm3). First we load
the emulsion into the sample chamber, and then behind the
emulsion we add pure mineral oil. A syringe pump injects
additional mineral oil into the chamber at constant flux rate
to push the emulsion through the chamber and thus funnel
the droplets through the hopper exit. The syringe pump is
connected to the chamber via Teflon tubing.

We use a microscope with a 1.6× objective lens to image
the system, focusing on the chamber midplane where the
two-dimensional (2D) droplet images are clearest. A CCD
camera records the images in the region close to (0.5–2 mm
away from) the hopper opening. Depending on the mean speed
of the flow in a given experiment, the camera frame rate is
between 0.2 and 2 images/s. This is sufficient to track the
trajectory of each individual droplet using standard software
[40], even at the maximum velocity 0.06〈D〉/s, where 〈D〉 is
the mean diameter of the droplets. The right panel in Fig. 1
shows a typical raw image, in which we record hundreds of
droplets within the field of view. Typically, we have 100–200
droplets in the field of view. In the 45 experiments, an average
of 425 droplets are seen to exit during an experiment, although
the exact amount varies from ∼100 to ∼1000.

B. Experimental control parameters

One of our main control parameters is the area fraction φ

occupied by oil droplets, as measured from our image analy-
sis. φ is somewhat controllable by what we put into the sample
chamber: ahead of time, we prepare bulk emulsion samples at
different 3D volume fractions. All our reported φ in this paper
are the measured values from the image analysis. From the
postprocessed images, we observe that φ has only minimal
fluctuations during an experiment, with a relative standard
deviation no more than 0.5%. These fluctuations are primarily
due to the finite field of view, with φ changing when droplets
flow in and out. In flowing suspensions of solid particles there
can be a self-filtration effect [41], but we see no evidence of
this (which would be signaled by a monotonic increase of φ).
Additionally, we look for water flow relative to the emulsion
droplets [42,43] by adding tracer particles to the water for a
few cases. In every case, the water flows at the same rate as the
oil droplets. For example, in some situations, the oil droplets
cease flowing for a period of time, and during those times the
water is also seen to cease flowing. There is an additional
possible systematic uncertainty for φ as the apparent size
of each droplet depends on the illumination settings of the
microscope. We keep these settings constant between each
experiment.

The other main control parameter for our experiments is
the flux rate F . We take a total of 45 data sets with 0.83 � φ �
0.99 and 0.0001 � F � 0.02 ml/hr. For each experiment, F
is set by a syringe pump and thus is constant at the pump.
However, the observed flow velocity fluctuates. This is likely
due to some compliance in the sample chamber, allowing
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sample to flow in slightly without having to flow out, and
building up pressure until it is released by droplets flowing
out. Therefore, rather than using F to parametrize the exper-
iments, we instead use the observed flux rate rexpt, measured
by the total number of droplets that exit the sample chamber
divided by the total observation time.

C. Computational methods

As noted above, while the pump provides a constant flux
rate F , the observed flow velocity fluctuates due to sample
chamber compliance. We use a simulation to better study the
importance of compliance. In particular, we use the Durian
bubble model, introduced in Ref. [36]. We use the version
as modified in Ref. [4] to account for variable numbers of
nearest-neighbor particles and as further modified in Ref. [44]
to account for viscous friction between the moving droplets
and the glass walls that make the experimental droplets quasi-
2D. In this model, droplets are considered as disks of fixed
radius Ri (for disk i) with a repulsive force when they over-
lap, meant to approximate the influence of surface tension
for real droplets. Droplet motion is assumed to be at low
Reynolds number (Re ≈10−2 at most in our experiment), so
the model sets the droplet velocity by having all repulsive
droplet-droplet forces (or droplet-wall forces) balanced with
the velocity-dependent viscous forces. The resulting equation
is∑

j

[ �F contact
i j + �F viscous

i j

] + �F wall
i + �F driving

i + �F plates
i = 0. (1)

The repulsive contact force between droplets i and j is given
by

�F contact
i j = F0

[
1

|�ri − �r j | − 1

|Ri + Rj |
]
�ri j, (2)

using the droplet radii Ri, their positions �ri, and the vector
�ri j = �r j − �ri. The neighbors j are defined as those droplets
for which |�ri j | < Ri + Rj , that is, overlapping circles. The re-
pulsive wall force is similar, pointing away from the wall and
using Rwall = 0. The viscous forces between two droplets act
if they are overlapping and moving with different velocities:
�F viscous
i j = bdroplet (�v j − �vi ), a force that attempts to equalize

their velocities. The viscous force from the confining plates
is given by �F plates

i j = −bplateR2
i �vi. As in prior work [44,45], we

take F0 = bdroplet = bplate = 1, and use droplets with a Gaus-
sian distribution of droplet sizes (mean diameter 1, standard
deviation 0.1). (The desire to use a Gaussian distribution in
the simulation, rather than a bidisperse distribution to better
match the experiment, is that this way the simulations are
consistent with our prior work [44,45]. Also, the details of
the particle size distribution should not matter that much to
the overall phenomenology we are studying; the main goal
in both simulation and experiment is to avoid the particles
organizing into hexagonal crystals, as they would do in a
monodisperse sample.) The unit of time in the simulation is
bdroplet〈R〉/F0, the time scale for two droplets to push apart,
limited by viscous drag.

The final force in the model is the driving force. To un-
derstand this force we will digress to discuss the influence of
compliance on regular fluids in a microfluidic chamber, fol-

lowing the argument in Tabeling [46] (see also Refs. [47,48]).
Tabeling considers the case of an incompressible fluid driven
by a constant flux pump at one end of a long tube with elastic
wall compliance; the fluid exits the tube at the other end.
Initially before the pump is started, the system has pressure
P0 = 0 and tube diameter D0. When the pump drives the fluid,
the pressure P(t ) at the pump end of the tube increases, putting
stress on the tube walls. The hoop stress and axial stress are
related to the pressure as

σθθ = 2σzz = D

2T
P (3)

in terms of the tube diameter D and tube wall thickness
T � D [49,50]. (The radial stress is negligible in tubes [49].)
Positive hoop stress tries to increase the tube diameter D, and
positive axial stress tries to increase the tube length L, with
the amount of increase limited by the Young’s modulus E for
the tube material. These expansion effects are coupled via the
Poisson ratio ν of the tube material, so the changes in the tube
dimensions for small pressure increases are [49]:

�L

L
= 1

E
(σzz − νσθθ ) = D

4T E
(1 − 2ν)P (4)

and
�D

D
= 1

E
(σθθ − νσzz ) = D

4T E
(2 − ν)P. (5)

The fractional change in volume is given by

�V

V
≈ �L

L
+ 2

�D

D
= D

4T E
(5 − 4ν)P ≡ P/S, (6)

where S ∼ E relates to the stiffness, that is, the resistance of
the tube material to stress. We can integrate both sides to relate
the pressure P(t ) to the volume V (t ) as

P(t ) = S ln

(
V (t )

V0

)
(7)

and we see that a change in P has a larger influence on V
when S is small. This would be the case if the tube is made
of a more flexible material. Note that while we have derived
this for a cylindrical tube, the relation Eq. (7) is quite general
and applies for different geometries with S ∼ E in all cases.
The exact relation between S and E depends on the specific
geometry.

We now consider how this relation between pressure,
volume, and elasticity applies to our simulation. In two dimen-
sions, the instantaneous area of the sample chamber is A(t ),
with A(t ) = A0 at t = 0. The pump moves to try to create a
constant flux ra0, but initially P ≈ P0 = 0 so the tube expands
without any fluid flowing out of the end of the tube. Here
a0 = π〈R2〉 is the mean area of one droplet, so that r is the
number of droplets that should exit the hopper per unit time.
The increasing A(t ) ties to an increasing pressure P(t ) (at the
pump) and this pressure gradient then can push fluid out of the
far end of the tube. There are steady-state values of A and P
such that the flux out of the far end of the tube is r.

However, the simulation considers not a regular fluid but
rather a collection of soft particles, which are capable of clog-
ging [44,45]. In other words, even with P > 0 the system may
clog, causing A to increase (as the pump continues moving)
and increasing P via Eq. (7) such that the system eventually
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unclogs. To quantify this, define Aout (t ) as the amount of
material that has exited the system. Define

Aexcess(t ) = ra0t − Aout (t ), (8)

the difference between the amount of fluid the pump has
moved into the tube (area ra0t) and the amount of fluid that
has actually left the tube. Thus, the area of fluid contained in
the tube is given at time t by

A(t ) = A0 + Aexcess(t ) (9)

so that

A(t )/A0 = 1 + Aexcess(t )/A0. (10)

This expression can be put into Eq. (7) to relate Aout (t ) to the
pressure P(t ) at the pump, causing a pressure gradient acting
on each particle.

In the simulation, we treat the pressure gradient as if it is a
gravitational force with strength g(t ), so that

�F driving
i (t ) = g(t )R2

i x̂ (11)

pushes the particles toward the hopper exit. The choice of
this force being proportional to R2

i is for two reasons. First,
this dependence matches that of F plates such that an isolated
droplet moves with constant terminal velocity, as expected.
Second, this lets us compare with our prior work, which
explicitly considered gravitational forces [44,45]; as will be
demonstrated, this is a fruitful comparison that will illustrate
the interplay between compliance, clogging, and avalanches.

To put this all together, Eq. (7) is rewritten

g(t ) = S ln (1 + Aexcess(t )/A0) (12)

≈ ln (1 + Aexcess(t )[S/A0]), (13)

where the approximation is valid for Aexcess � A0. Given that
S and A0 now appear in a ratio, we define this ratio to be the
effective stiffness s, and rewrite Eq. (12) as

g(t ) = ln (1 + sAexcess(t )). (14)

In the simulation we will vary s from 10−5 to 2×10−3, and
in practice this equation will lead to values of g in the range
g ∼ 10−4–10−1, consistent with our prior work, which found
that clogging occurs in this range [44]. Aout increases by πR2

i
when droplet i exits; a droplet that is partially out of the
hopper contributes its fractional area to Aout.

To run the simulation we put 500 particles into the hopper
near the exit and start with Aexcess(t = 0) = 0, g(t = 0) = 0.
The hopper is set with a fixed opening width w/d and stiffness
s. g then increases according to Eqs. (8), (14) using the desired
flux rate r. Droplets that exit the hopper add their area to
Aout (t ); the droplets are then replaced into the hopper touching
the droplets farthest away from the hopper exit, so that the
number of particles remains constant. Indeed, at steady state,
fluid exiting the compliant tubing would be replaced by new
fluid injected by the syringe pump, keeping the total amount
in the tubing constant. This choice of a constant number of
droplets is equivalent to saying that Aexcess(t ) is always small
compared to A0.

We run the simulation using fourth-order Runge-Kutta to
solve the differential equations for the droplet velocities, typ-
ically using a time step of 0.1 [44]. We would expect there

is some value of g such that the time-averaged flux matches
ra0, but we would also expect that g will fluctuate and that
dAout/dt will fluctuate around the value ra0. The data are
examined and the initial transient is discarded, such that for
the remaining data dAout/dt indeed fluctuates around ra0. The
simulation is then run until 1000 droplets exit the hopper.

III. EXPERIMENTAL RESULTS

We observe a wide range of flow behaviors as we vary F
and φ for different experiments. For large F , droplets flow
continuously and smoothly (referred as smooth flow cases).
For small F , we see avalanchelike flow (referred as avalanche
cases). For intermediate flux rates F , we observe intermediate
cases between these two flow patterns. As will be discussed
below, we do not see any clear dependence of these flow
patterns on the area fraction φ.

We summarize these three flow behaviors in Fig. 2. The
three pictures in Figs. 2(a)–2(c) use color to show the time
each droplet exits the hopper opening to the right. Red
droplets exit the earliest, and blue the latest. The left picture
is a smooth flow case, which shows a smooth gradient in
color. The right one shows an avalanche case, where droplets
have distinct groups of colors indicating that droplets exit
the hopper in bursts. Note that the color scale of each plot
corresponds to a different amount of time, as specified by the
color bar.

Figures 2(d)–2(f) quantify these pictures by showing the
cumulative number of droplets that have exited the hopper as
a function of time for our three flow cases. In the smooth
flow case [Fig. 2(d)], the data form a smooth curve with
a well-defined slope, showing that droplets exit the hopper
continuously at a fairly constant rate. The intermediate case
[Fig. 2(e)] shows fluctuations in the rate, although it is still
fairly continuous. In avalanche case [Fig. 2(f)], there are
stretches of time where no droplets exit, followed by discrete
sudden flow events where many droplets exit within a short
period of time, indicated by the vertical portions of the data
in Fig. 2(f). Specifically, the first vertical line at t ≈ 6000 s
relates to all of the light green droplets in Fig. 2(c) that exit
at nearly the same time. Again, the existence of avalanches
despite the constant flux set by the syringe pump shows that
there is some compliance in the chamber, such that the pres-
sure builds up before an avalanche.

Figures 2(g)–2(i) show the histograms of numbers of
droplets that outflow within a short time window �t . �t is
chosen to make the mean outflow size to be 10. The smooth
flow case [Fig. 2(g)] has a Gaussian shape while the avalanche
case [Fig. 2(i)] has a few rare but large events. To quantify this,
the skewness values for these distributions are [Fig. 2(g)] 0.15,
[Fig. 2(h)] −0.03, and [Fig. 2(i)] 2.2 for smooth flow, inter-
mediate, and avalanche cases respectively. Not surprisingly,
the avalanche case has a large positive skewness, and this is
generally true that all avalanche flow cases have positively
skewed distributions. Given that the avalanche cases have few
events overall (∼100 in some cases), our skewness data are
noisy and we cannot resolve any clear trend in the skewness
as a function of our control parameters. The general picture
shown in Figs. 2(g)–2(i) is clear, though, that avalanche cases
have distributions with positive skewness and there is a trend
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FIG. 2. Description of the three flow behaviors. (a)–(c) Images of the samples at a particular time, with the color indicating the time when
the droplet exits (see color bars). The red droplets exit earlier and blue droplets exit later. (d)–(f) The cumulative number of droplets that have
exited the hopper as a function of time. (g)–(i) Histograms of the number of droplets exiting the hopper within a short time window �t , chosen
such that the mean of the histogram is ten droplets. The flow conditions are: (a), (d), (g) smooth flow, φ = 0.87, rexpt = 0.17 s−1. (b), (e), (h)
Intermediate, φ = 0.96, rexpt = 0.085 s−1. (c), (f), (i) Avalanche, φ = 0.96, rexpt = 0.020 s−1.

toward more symmetric distributions with skewness ≈0 as the
mean flux rate rexpt increases.

To better quantify the difference of these flow behaviors,
we focus on the temporal behavior of the flow. In avalanche
cases, discrete sudden flow events are separated by time in-
tervals where droplets barely move and no droplets exit the
hopper. Accordingly, we define the time between two succes-
sive droplets exiting the hopper as the interval �t . As shown
in Fig. 3, we set t1 as the time when the black droplet exits the
hopper, t2 as the time when the next droplet (in red) exits, and
then �t = t2 − t1. In most experiments, we observe at least
100 droplets exit and thus have that many intervals. For the
fastest flow rates, we have over 1000 intervals measured.

t

1t 2t

FIG. 3. Schema of the definition of interval �t . The left figure is
at time t1 when the black droplet exits the hopper. The right figure is
at time t2 when the red droplet exits the hopper.
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FIG. 4. Typical examples of three types of probability distribu-
tion functions of �t : (a) exponential distribution, (b) intermediate
case, (c) power-law distribution. The area fraction φ and mean flux
rate rexpt are as indicated in each panel. In (a) the line shows an
exponential fit P(�t ) ∼ e−�t/τ with τ = 6.3 s. In (b) the straight line
is a power-law fit P(�t ) ∼ �t−α with α = 2.1 and the curved line is
an exponential fit with τ = 12.7 s. In (c) the line is a power-law fit
with α = 1.6.

It is apparent in the plots in Figs. 2(d)–2(f) that the distri-
butions of �t are different for the smooth flow and avalanche
cases. In smooth flow, the values of �t are small and do not
fluctuate much. In the avalanche case, �t is sometimes small
(vertical portions, where many droplets exit over a short time
interval) and sometimes large (horizontal stretches, where a
long time passes between one droplet exiting and the next).
Figure 4 shows the probability distribution functions for �t
for the same three data sets shown in Fig. 2. The smooth
flow case shown in Fig. 4(a) is well fit to an exponential, as
shown by the dashed red line; note this is a semilog plot. The
exponential fit suggests that the time between events follows
a Poisson process, where events occur continuously and in-
dependently with a constant mean rate. The avalanche case
shown in Fig. 4(c) is well fit to a power law, as shown by the
dashed red line; note this is a log-log plot. The fit in this case
is given by P(�t ) ∼ �t−α with α = 1.6, and the power-law

FIG. 5. Phase diagram of fitting patterns of P(�t ) in terms of
area fraction φ and flux rate rexpt for our 45 experiments. Red circle:
power law; blue triangle: intermediate; black cross: exponential.

regime covers more than two decades in �t and more than
four decades in probability. The tails correspond to the long
periods of time where droplets barely move. The intermediate
case in Fig. 4(b) is plotted on log-log axes, and can be fit with
either a power law (straight line) or an exponential (curved
line); neither fit is perfect. The exponential fit fails for the
largest �t while the power law is not adequate to describe
the small �t region.

In our experiments we vary both φ and flux rate. For
each experiment, we use the shape of P(�t ) to describe its
flow behavior. Figure 5 shows the phase diagram of fitting
patterns. There is no obvious trend with φ, but more clearly
a transition from avalanche flow (red circles) to avalanche
flow (black cross) with increasing rexpt. Note that the judgment
about the best fitting function is done by eye. The quality of
each fit depends on which range of data is used for the fit,
and while we have tried several ways to approach the fitting
procedure more systematically, none seem satisfactory for the
intermediate cases, and none affect the appearance of Fig. 5 in
any substantial way.

The phase diagram of Fig. 5 is perhaps unsatisfying as
the intermediate cases (blue triangles) are mixed in with the
other two cases. However, by ignoring φ and focusing only
on the flow rate dependence, the data become more unified.
In particular, Fig. 6 shows the relation between the power-law
exponent of P(�t ) and rexpt. The power exponent α increases
as the flux rate increases. Even when the power-law fit is
not perfect (triangles), the data still follow the general trend
started by the well-fit power-law cases (circles). Smaller val-
ues of α indicate a broader distribution, where the large �t
events are more significant: these are the avalanche cases with
long pauses between short bursts when many droplets exit.
This is similar to previous experimental studies of sheared
granular materials, which have power-law distributions of
various stick-slip event properties including forces, energy,
and avalanche sizes [23,51–55]. Likewise, studies of clog-
ging with sources of vibration or agitation find power-law
distributions of exit times [13,21]. To comment briefly on the
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FIG. 6. (a) The power-law exponent α as a function of the exper-
imental flux rate rexpt. For the power-law fits, only data in the tail are
used for the fit. Different choices of the minimum �t used for the fit
give rise to different values of α, reflected in the error bars shown.

exponential cases, note that the exponential fitting parameter
τ corresponds to the mean interval between droplets exiting,
and thus is connected to the flux rate by τ = 1/rexpt.

IV. SIMULATION RESULTS

As described in Sec. II C, the aim of the simulation is to
describe the flow of soft 2D particles with viscous interac-
tions and in a system with controllable compliance. From our
prior work with fixed (gravitational) driving, we know that
such systems can clog [44,45] where particles stop exiting
the hopper permanently. This clogging occurs more easily for
narrow opening exit widths w/d (in terms of the mean droplet
diameter d). In the simulations we report here, the driving
can increase indefinitely [Eqs. (8), (14)] so that no clog is
permanent.

Figure 7 confirms that this simulation leads to clogging and
avalanche behavior. In this figure the conditions have been
optimized for clogging: a small opening width w/d , small flux
rate r, and small stiffness s (see caption for details). The be-
havior of g is shown in Fig. 8 (r = 0.001 data, bottom curve).
The small flux rate and small stiffness results in a repeated
cycle where g is small enough to cause clogging, then gradu-
ally Aexcess and thus g build up until the clog is disrupted and

FIG. 7. Image of the simulation data, colored similarly to Fig. 2
with color indicating the time when the droplet exits. For this simu-
lation, the exit width is w/d = 1.4 (width divided by mean droplet
diameter), the flux rate is r = 10−3, and the stiffness is s = 3×10−5.
The exit time distribution appears power law with exponent α = 1.7.
The total time shown is 5.53×105, during which given r = 10−3 we
would expect 553 droplets to flow out; only 500 droplets flow out for
this particular time interval.

FIG. 8. The value of the simulation driving parameter g as a
function of time. Time is normalized by the rate r such that on
average one droplet should exit per unit normalized time. Stretches
of data where g increases are due to periods where the system is
clogged. The values of the rate r are as indicated.

an avalanche occurs, at which point Aexcess quickly decreases,
decreasing g so that another clog can occur. In Fig. 7 there is
an obvious division between the red and yellow droplets. The
red droplets all exit the hopper before rt ≈ 100. At rt ≈ 100,
Fig. 8 shows the start of a long nearly monotonic increase in
g, which ends at rt ≈ 220. This is when the yellow droplets of
Fig. 7 begin to exit the hopper.

As with the experiment, the time �t between subsequent
droplets exiting the hopper varies. Representative probability
distributions for the simulation are shown in Fig. 9, where the
only parameter varied is the imposed flow rate r as indicated in
each panel. The largest flow rate corresponds to an exponen-
tial distribution [Fig. 9(a)], the slowest flow rate corresponds
to a power-law distribution [Fig. 9(c)], and the intermediate
flow rate is a bit hard to characterize [Fig. 9(b)].

The simulation allows us to better understand how the
avalanches are related to clogging. To do this we conduct a
complementary set of simulations where g is fixed [in other
words, an infinitely stiff system [s → ∞], and not using
Eq. (14)] and the simulation is run until clogging is observed.
As with the main simulations described in Sec. II C, we use
500 droplets and when a droplet exits the hopper it is replaced.
When a clog occurs, the clogging event is recorded, and the
system is reset by removing the droplets forming the clogging
arch and replacing them at the back of the hopper. A clog
is defined as when no droplets exit the hopper for a long
time, and the maximum velocity of any droplet falls below
10−5 [44]. During times when clogging has not occurred, we
measure the mean flux rate 〈r〉. These no-compliance results
are shown in Fig. 10(a) as the solid lines—that is, these lines
are the time averaged flux 〈r〉 emergent from the simulation at
fixed g. These results are comparable to the results from the
first set of simulations, plotted as symbols, where the flux rate
r is fixed and we measure the time averaged 〈g〉. For r > 10−2

at the right side of the graph, we get the same results whether
we fix g or fix r.

On the left side of the graph in Fig. 10(a), for the simula-
tions with compliance, the mean value of g is higher than we
would expect for a given desired flux rate r based on the no-
compliance simulations. To understand this, we consider the
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FIG. 9. Typical examples of three types of probability dis-
tribution functions of �t from simulation data: (a) exponential
distribution, (b) intermediate case, (c) power-law distribution. The
flux rate r is as indicated, and for these data the stiffness is s = 10−4.
The time is normalized by r, so that the mean time between droplets
exiting is 1. In (b) the straight line is a power-law fit P(�t ) ∼ �t−α

with α = 6.5. In (c) the straight line is a power-law fit with α = 2.1.
The dashed lines in (a) and (b) are exponential fits.

clogging probability measured in the no-compliance simula-
tions. We determine the mean number of droplets that flow out
between clogs 〈N〉, and define Pclog = 1/〈N〉, the mean prob-
ability of any individual droplet clogging. This probability is
plotted in Fig. 10(b): to be clear, the no-compliance simula-
tions are done with fixed g (vertical axis) and we measure Pclog

(horizontal axis), plotted this way to facilitate comparison
with Fig. 10(a). For smaller values of g, clogging is easier.
Additionally, for smaller opening size w/d , clogging is easier
[red circles in Fig. 10(b)]. This then explains the flux results
for small gravity (small flux) in Fig. 10(a): The expected value
of g for achieving a desired flux rate r is so small that clogging

FIG. 10. (a) Symbols: the mean value of the gravitational driving
parameter g as a function of the desired mean flux rate r, for w/d =
1.4 (circles) and w/d = 2.0 (triangles). The thin vertical lines indi-
cate the spread from the tenth percentile to 90th percentile of g. Thick
lines: the mean value of the measured flux rate r from simulations
with constant g, omitting moments when the simulation permanently
clogged. (b) The horizontal axis shows the probability per droplet of
a clogging event from simulations with constant gravity g (vertical
axis).

easily occurs for the given opening width w/d . Thus g rises
until the clog breaks, although at that point g is larger than
needed for the desired flux rate r and g thus decreases. It is
these fluctuations in g that result in long-lived clogs and large
avalanches. Due to the logarithm in Eq. (14), the mean value
of g is higher than expected from simple extrapolation of the
no-compliance simulation data [the solid lines in Fig. 10(a)].
The thin vertical lines in Fig. 10(a) show the variability of g,
highlighting that the fluctuations are more significant when
the desired flux rate r is small. The long tails of the P(�t )
distributions are due to unusually strong clogging arches. This
suggests that the strength of an arch—how much weight it can
support—may have a power-law distribution as well.

Figure 10(a) also suggests that there is some threshold
arch strength that must be exceeded to break the strongest
arches. That is, the height of the thin vertical lines is nearly
constant for low values of r, showing that the fluctuations in
g always rise above a threshold to unclog the system. This is
also suggested in Fig. 8, where the two lowest rates r have
similar maximal values of g. In a sense, our clogging system
is acting like a yield stress fluid [56]. For a yield stress fluid,
if the applied stress is below the yield stress, it does not flow.
The difference between a yield stress fluid and our system is
that for the former the nonflowing behavior is a homogeneous
bulk response from the entire material, whereas in our system
the clogging is due to the few specific particles forming the
arch at the exit [44]. For this reason, in our simulation the
particular yielding point (value of g for which the system un-
clogs) varies from clog to clog, given that the arch structure is
variable.

These results (clogging and time-varying forcing g) con-
ceptually explain the probability distribution functions for
the time intervals shown in Fig. 9. To complete the story,
Fig. 11 uses the compliance simulation data to show how the
measured power-law exponent α varies with the flux rate r
at fixed stiffness s in Fig. 11(a), and how α varies with s at
fixed r in Fig. 11(b). The larger uncertainties at r ∼ 10−2 and
s � 10−3 indicate that the power-law fits become dubious,
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FIG. 11. (a) Power-law exponent α as a function of flux rate r
from simulation data, for w/d = 1.4 (circles) and w/d = 2.0 (trian-
gles). The stiffness is s = 10−4. (b) α as a function of stiffness s for
fixed flux rate r = 10−3 and the symbols indicating w/d as in (a).
For both panels, the error bars indicate the uncertainty of α. Where
not shown, the uncertainty is smaller than the symbol size.

signaling the crossover to exponential distributions. Power-
law exponents α > 3 are also reasonable indications of a
transition to exponential distributions. The results of Fig. 11
strongly suggest that indeed it is the experimental compliance
that allows for us to observe the flow-rate-dependent crossover
from avalanche behavior to continuous flow. The values of
α we see in the simulation are comparable with the experi-
mental values (compare Fig. 6) at the low end; at the high
end, the simulation can generate more data and thus measure
power-law exponents even for steeply decaying functions with
3 < α < 6.

V. CONCLUSIONS

We have demonstrated that in a simple hopper geometry
we see behaviors changing from clear avalanches to smooth
continuous flows as we increase the mean flow rate by a
factor of 100. We quantify these behaviors by examining the
distributions of times �t between subsequent droplets exiting
the hopper. Intriguingly, the transition in the flow behaviors is
smooth as we increase the flow rate: the power-law exponent
characterizing the tails of P(�t ) smoothly varies as the flow
rate increases past the point where a power law no longer
adequately describes the data [Figs. 6, 11(a)]. One possibil-
ity is that at any flow rate, the distribution P(�t ) may be

describable by a power law with an exponential cutoff, and
this cutoff may smoothly move to smaller �t as the flow rate
increases. However, the data we have for the intermediate
cases [such as shown in Fig. 4(b) and Fig. 9(b)] are hard
to interpret in the tails, and so it is difficult to resolve this
question. The rate dependence of our observations is consis-
tent with prior studies of athermally sheared 2D amorphous
solids, which demonstrated rate dependence [19,57–62].
A simulation [63] based on Durian’s 2D bubble model [15]
predicted a similar trend for the flow behavior as strain rate
increases. However, this study also found a dependence of the
transition on area fraction, which we do not see. It is likely
this is due to different flow geometries (a simple shear flow
in the simulation, as compared to our hopper flow, which
allows for clogging). The dependence on velocity is also
displayed in experimental studies of sheared granular mate-
rials, where friction plays a key role [9–11]. One of these
studies in particular also noted that more compliant driving
resulted in larger fluctuations in the sample motion [10], in
agreement with our observations. For hopper flow in granular
experiments, the presence of static friction can make jamming
and clogging obvious, where stress-supporting solid arches
form across the exit [32,44]. In addition to static friction,
such experiments are also driven by a constant force (grav-
ity), whereas in our experiments the syringe pump increases
the pressure until flow occurs, and so no arches can persist
indefinitely.

It is also clear from the simulations that the compliance
plays an important role. By increasing the stiffness of the
system [Fig. 11(b)] we can drive the system from power-law
behavior to exponential behavior. While our results suggest
that even for a quite stiff system there is still some hypo-
thetical quite slow flux rate that would lead to avalanches, it
is likely that such a low flux rate would be experimentally
challenging to control. While our simulation method uses
some approximations, the conceptual picture is simple. At
slow flow rates, when the sample clogs, the pressure rises
until it unclogs, and then the pressure drops to keep the
mean flow rate slow. For fast flow rates, the driving pres-
sure is such that the sample never clogs, so the flow rate is
steadier.

In summary, we see that the flow of an emulsion through
a hopper can vary from avalanchelike to continuous. The
transition between these behaviors is not abrupt, but rather
a continuous function of the flow rate. At the lowest flow
rates, the power-law exponent we observe approaches α = 1,
showing that the flow has extremely long quiescent intervals
in between the avalanches. The decrease of the power-law
exponent with decreasing flow rate [Figs. 6, 11(a)] suggests
that even with these slow flows, we are not in a quasistatic
limit, in agreement with a prior study of slowly sheared bubble
rafts [64]. In this simple limit where the strain rate approaches
zero, the flow is not simple, but rather dominated by the rare
intermittent avalanches.
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