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Abstract
We use a confocal microscope to examine the motion of individual particles
in a dense colloidal suspension. Close to the glass transition, particle motion
is strongly spatially correlated. The correlations decay exponentially with
particle separation, yielding a dynamic length scale of O(2–3σ) (in terms of
particle diameter σ ). This length scale grows modestly as the glass transition is
approached. Further, the correlated motion exhibits a strong spatial dependence
on the pair correlation function g(r). Motion within glassy samples is weakly
correlated, but with a larger spatial scale for this correlation.

1. Introduction

The viscosity of a glass-forming material increases rapidly by many orders of magnitude as it is
cooled, without any corresponding structural change to account for the viscosity change [1, 2].
Adam and Gibbs suggested that a growing dynamic length scale may relate to the viscosity
growth [3]. Their idea has been interpreted in several ways [1, 2, 4–8], but no experiment has
been able to observe dynamic length scales directly, nor is it clear what form these length scales
would take. Indirect evidence is provided by experiments which locally perturb materials in a
variety of ways, and observe the relaxation response of the material and its dependence on
the scale of the perturbation [9]. Further evidence for a dynamic length scale comes from
experiments performed in thin films or small pores [10], but these experiments do not observe
the nature of any correlated motion directly. Recent simulations examined correlation functions
in systems of Lennard-Jones particles [11, 12] and hard spheres [13], finding evidence for
spatial correlations and a possible dynamical correlation length scale [11, 13].

We study a system of colloidal particles which interact only via repulsive forces, and which
have a glass transition as their concentration is increased. We use a confocal microscope
to track the motions of several thousand particles for several hours, which is long enough
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for most particles to undergo non-trivial displacements. The mobilities of these particles
(the magnitudes of their displacements) are correlated over distances of ∼2–4σ , in terms of
the particle diameter σ . These correlations reflect large-scale cooperative rearrangements of
particles seen previously [11, 13–16]. We also examine the correlations between the directions
of particle displacements. While the directions are correlated, this does not appear to be as
strong a signature of the rearrangements. These measurements are direct experimental studies
of the nature of the long-range correlations present near a glass transition, and indicate that
rearranging regions of particles are composed of particles with large displacements, but which
do not all move in similar directions; rather, these regions are internally rearranging [17].

2. Experimental methods

Our system consists of a suspension of colloidal poly-methyl-methacrylate, sterically stabilized
and dyed with a rhodamine dye [18]. These particles are slightly charged, and have a hard-
sphere diameter σ = 2.36 μm and a polydispersity of 5%. They are suspended in a mixture
of cycloheptylbromide and decalin which nearly index and density matches the particles. The
samples are prepared with a constant volume fraction φ and sealed into microscope chambers.
We observe crystallization occurring at φ = 0.42, slightly lower than the value expected
for hard spheres (φHS = 0.494) [19, 20]. Samples with φ > φg ≈ 0.58 do not form
crystals within the bulk, even after sitting at rest for several months, allowing us to identify
φg as the glass transition volume fraction, in agreement with previous work [19, 20]. Prior
to observation, samples with crystals in them are shear-melted by means of a stir bar; there
is a reasonable separation of timescales between the decay of transient flows caused by the
stirring (<20 min) and the onset of crystallization for these samples (>5–10 h, as determined
by methods described in [21]).

We use confocal microscopy to observe the particle motion. A single three-dimensional
image is acquired in 10 s, and over the course of an experiment we acquire several hundred
images. As the mean square displacement curves show in figure 1(a), particles do not move
significant distances on a timescale of 10 s. We post-process the data to determine particle
positions with an accuracy of 0.03 μm horizontally and 0.05 μm vertically [18]. Each three-
dimensional image is 69 μm × 65 μm × 14 μm and contains several thousand particles. We
focus at least 25 μm from the cover slip to avoid interference from the wall, and in fact the
observed motion appears to be isotropic.

3. Results

To characterize the behaviour of the samples, we calculate the particles’ mean square
displacement 〈�x2〉, shown in figure 1(a) for five samples. These curves all show a plateau,
due to cage-trapping: each particle is confined in a cage formed by its neighbours. At longer
times, 〈�x2〉 shows an upturn, indicating that at least some particles have moved. For the
supercooled fluids (thick lines, φ < φg), previous work showed that these motions correspond
to a small subset of particles undergoing cage rearrangements [11, 14–16]. These particles
move significantly further than the majority of the particles, and thus distributions of the particle
displacements show broad tails at these timescales [11, 14–16]. This is quantifiable by the non-
Gaussian parameter

α2(�t) = 〈�x4〉
3〈�x2〉2

− 1 (1)

where the moments of �x are calculated from the measured distributions of the one-
dimensional displacements �x . α2 is zero for a Gaussian, and larger when the distributions

2



J. Phys.: Condens. Matter 19 (2007) 205131 E R Weeks et al

Figure 1. (a) Mean square displacement for colloidal ‘supercooled’ fluids (thick lines) and colloidal
glasses, with volume fractions φ as labelled. (b) Non-Gaussian parameter α2 for the samples shown
in (a). (c), (d) Vector correlation function S�u(�t) and scalar correlation function Sδu(�t) for the
samples shown in (a), using �r corresponding to the first peak of the peak of g(r) for each sample.

are broader than a Gaussian. We plot α2 in figure 1(b), finding that for supercooled fluids (thick
lines) α2 has a peak corresponding to the end of the plateau of 〈�x2〉, due to the presence
of the anomalously mobile particles [14]. For colloidal glasses (thin lines in figure 1(a)), the
upturn in 〈�x2〉 is due to ageing, and occurs at a timescale �t which varies with the time since
sample preparation [22]. It is unclear if the motions responsible for the upturn are due to cage
rearrangements [14].

Intriguingly, in supercooled colloidal fluids, the motion of these cage-rearranging particles
is spatially localized, and the peak of α2(�t) corresponds to the existence of large clusters of
these particles all moving simultaneously [14]. In fact, the positions of mobile particles appear
in localized clusters over a range of timescales �t , and the �t dependence of the typical cluster
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size appears qualitatively similar to the �t dependence of α2 [14]. However, interpretations
of these observations are difficult, as the details depend on the particular definition of which
particles comprise a mobile cluster. In this work we seek to characterize particle motion in a
way that does not arbitrarily separate particles into mobile and immobile populations.

We wish to determine how these previously observed clusters of cage-rearranging particles
are manifested in correlations of the motion of individual particles. In a dilute suspension
of particles, particles have only hydrodynamic interactions, and the correlations between the
displacement vectors �u of two particles should decay as 1/�r with increasing separation
�r [23–25]. This result would still hold true for dilute tracers in any homogeneous viscoelastic
medium [26, 27]. However, it seems unlikely that our samples are homogeneous on the length
scales that we consider; our imaging window has a width of only ∼25 particle diameters.
The direct interparticle forces (their electric charge, and steric repulsion) are likely to be as
important as hydrodynamic interactions.

Thus, we do not necessarily expect 1/�r decay of correlations, especially given the
apparently cooperative and localized nature of the cage rearrangement motion. For example,
a simulation of hard spheres at large volume fractions found exponential decay [13]. This
suggests that particles may rearrange by translating together in a group. One possibility for
this group motion is that cage-rearranging particles move in parallel directions [11, 13–15].
An alternate possibility is that mobility may be correlated over long distances. Mobility is
the magnitude of particle displacements, u = |�u|, sometimes with the average subtracted
off (δu ≡ u − 〈u〉). In fact, the previous observations of clusters of anomalously mobile
particles are a direct indication that mobility is correlated; simulations have provided evidence
that there is a correlation length scale [11, 13]. Correlations of mobility are consistent with
both collectively translating regions, and also internal rearrangements within localized regions.

To study these possibilities, we compute two correlation functions from our data: one using
�u and one using the mobility δu [11, 13, 25]. We define

S�u(�r,�t) = 〈�ui · �u j〉
〈u2〉 , (2)

Sδu(�r,�t) = 〈δuiδu j 〉
〈(δu)2〉 , (3)

where the timescale �t is used to define the displacements �u and mobility δu. For both
formulas, the numerator average is over all pairs of particles i, j with separations �r , and
the denominator average is over all particles.4,5 The normalization of both of these functions
is chosen so that perfectly correlated motion (�ui = �u j for all particles i, j ) corresponds to
S�u = Sδu = 1, perfectly anticorrelated motion (�ui = −�u j ) corresponds to S�u = −1, and
uncorrelated motion gives S�u = Sδu = 0. Note that Sδu measures fluctuations of mobility, so

4 Our function S�u can be related to the two-particle function described in [25]:

Dα,β (δr,�t) = 〈uα
i uβ

j 〉 (4)

where α and β indicate the components of the vector displacements to multiply. Thus D(δr,�t) can be related to
S�u(�r, �t) as

Dxx + Dyy + Dzz = S�u(�r, �t)〈|u|2〉. (5)

Note that 〈|u(�t)|2〉 is just the ordinary mean square displacement, and is �r independent, so to convert from
S�u(�r, �t) to D(�r, �t) is simple.
5 Our function Sδu can be related to the two-particle function described in [11], gu (�r, �t), which is analogous to the
static pair correlation function g(r). The static pair correlation function is defined by

g(�r) = 1

4π(�r)2〈n〉N

∑

i, j �=i

δ(�r − Rij ) (6)
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either anomalously mobile or anomalously immobile particles would show positive correlation.
By examining the �r dependence of these functions we learn about spatially correlated
motion, and by examining the �t dependence we study the correlated motion seen at different
timescales.

To study the �t dependence of S�u and Sδu , for convenience we choose a fixed value
�r = �rnn for each data set, set by the first maximum of the pair correlation function
g(r) (which is slightly larger than at σ , and depends slightly on φ, due to the charging of
the particles). Pairs of particles with separation �rnn are nearest neighbours and are strongly
correlated due to their close proximity, as will be shown later.

We plot S�u(�t,�rnn) in figure 1(c) and Sδu(�t,�rnn) in figure 1(d). For the supercooled
fluids (thick lines), the behaviour of these two functions is dramatically different. S�u is nearly
constant as a function of �t , whereas Sδu is small at short lag times, rises to a maximum, and
then has a downturn. Strikingly, the �t dependence of Sδu is similar to that of the non-Gaussian
parameter α2, which can be seen for three supercooled fluid samples by comparing the thick
lines in figures 1(b) and (d). While Sδu reaches its maximum at slightly larger values of �t ,
it appears that the anomalously mobile particles (which cause the increase of α2) are directly
responsible for the increasing correlation measured by Sδu . While the time dependence of the
vectorial correlations S�u is much weaker than for the mobility, there is a slight rise at larger
�t seen in figure 1(c) [13]. It has been conjectured that S�u(�t → ∞) should be non-zero,
as short-lag-time interparticle correlations will always provide a contribution to 〈�ui · �u j 〉 even
if particles are uncorrelated at longer lag times [13]. This may explain why we do not see a
downturn in S�u at large �t .

Figures 1(c), (d) also show that at short lag times, S�u > Sδu , although at the cage-breaking
timescales, the opposite is true. These results, along with the similar lag time dependence of
α2 and Sδu , suggest that the cage rearrangements are due to mobility correlations, rather than
a strong directional correlation. The implied picture is that regions of cage rearrangements are
composed of highly mobile particles, which move in many directions. While the motions of
neighbouring particles are somewhat directionally correlated, the cage rearrangements reflect
regions of internal restructuring rather than large-scale cooperative translations.

Further confirmation of this picture comes from the volume fraction dependence of the
correlation functions, seen in figures 1(c), (d). As φ increases towards the glass transition
at φg ≈ 0.58, S�u changes only slightly, while Sδu changes dramatically, again similar to the
behaviour of α2. The growth of Sδu (and non-growth of S�u) indicate that as the glass transition
is approached, mobility correlations become increasingly important, while the directional
correlations remain virtually unchanged.

which is normalized so that g(�r) → 1 as δr → ∞. N is the number of particles in the sample, 〈n〉 is the number
density, and δ( ) is the Dirac delta function. Using our notation,

gu (�r, �t) =
〈∑

i, j �=i ui u j δ(�r − Rij (t))
〉

t

4π(�r)2〈u〉2〈n〉N
(7)

= 〈ui u j 〉
〈u〉2

g(�r) (8)

where the angle brackets 〈 〉t around the sums in the first line indicate a time average, and 〈ui u j 〉 is taken over all pairs
of particles with separations �r . It can be shown that

gu (�r, �t)

g(�r)
− 1 =

( 〈u2〉
〈u〉2

− 1

)
Sδu(�r, �t) (9)

thus relating our Sδu with the function gu ; the left-hand side of this equation is equivalent to 	(�r, �t) discussed
in [11]. gu is proportional to g(�r), whereas Sδu is not.
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Figure 2. (a) Correlation functions for φ = 0.56 (a supercooled fluid close to the glass transition),
with �t = 2000 s. (b) Correlation functions for φ = 0.62 (a glass), with �t = 10 000 s. (c) g(r)
for the data shown in (a); g(r) is similar for the data shown in (b).

The results are harder to interpret for glassy samples (thin lines in figure 1), due to the
ageing of the system. In an ageing system, the properties of the samples depend on the time
since the sample was prepared [22]; for example, the increase in 〈δx2〉 at large �t (figure 1(a))
moves to longer �t as the sample age increases. (The sample age is defined as the time since
stirring the sample prior to the start of the experiment. To minimize the effects of ageing for
these data, data acquisition was started 5–10 h after stirring the sample, which reliably initiates
the ageing [22].) As seen in figures 1(c), (d), any φ dependence for the correlated behaviour in
glassy samples is unclear. The correlation functions are non-zero due to correlated motion of
particles within cages; however, the increases seen in S�u and Sδu at large �t are probably due
to the slight motions responsible for ageing [22].

To examine the spatial character of the highly correlated particles occurring at the cage-
rearrangement timescales, we study the �r dependence of these functions, fixing �t to
maximize Sδu (figure 1(d)). The correlation functions are shown for a supercooled fluid
(φ = 0.56) in figure 2(a), indicated by the thick lines. Both functions oscillate, with especially
strong oscillations seen in S�u (thick solid line). Strikingly, these oscillations coincide with
oscillations of the pair correlation function g(r), shown in figure 2(c). For example, pairs of
particles with separations corresponding to the first peak in g(r) are nearest neighbours, and
are the most strongly correlated. This agrees with our earlier work, which found that the pair
correlation function g(r) influences the motion of pairs of particles [17]. In fact, comparing Sδu
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and S�u shows that the correlation of the mobility of pairs of particles is less sensitive to g(r),
whereas the correlation of their directions is more sensitive to g(r). This is further evidence
that cage rearrangements involve regions of particles with high mobility, although within those
regions the directions of the displacements of individual particles are not as strongly correlated,
but rather are influenced by g(r). Both simulations of Lennard-Jones particles and of hard
spheres saw similar oscillations in spatial correlation functions, but the relationship with g(r)

was unclear, as the systems had higher polydispersity than our samples [11, 13] (see footnote
5).

To further examine the correlations in the directions of motion of pairs of particles,
we decompose S�u into longitudinal correlations (correlations of the displacement along
the direction of the separation vector ��ri j ) and transverse correlations (correlations of the
component of the displacement vector perpendicular to ��ri j ). Two new functions are defined
as:

S�uL(�r,�t) = 〈uL
i uL

j 〉
〈u2〉 (10)

S�uT (�r,�t) = 〈�uT
i · �uT

j 〉
〈u2〉 (11)

where uL
i = �ui · R̂i j , uL

j = �u j · R̂i j , uT
i = �ui − uL

i R̂i j , and uT
j = �u j − uL

j R̂i j . The normalization

is chosen so that S�u = S�uL + S�uT . R̂i j is a unit vector pointing from particle i to particle j , and
the dot products for the uL terms are taken so that two vectors pointed in the same direction
correlate positively. These two functions are plotted in figure 2(a) (thin lines). The oscillations
of S�u are almost entirely due to the contribution from S�uL (thin solid line), indicating that
the longitudinal motion is most sensitive to g(r). In fact, the longitudinal correlations of
the motions of nearest-neighbour particle pairs are suggestive of ‘string-like’ motion seen
in simulations [28]. However, S�uL also shows a slight anticorrelation at �r ≈ 3.2 μm,
corresponding to the first minimum of g(r). This indicates that pairs of particles separated
by ≈1.5σ are actually more likely to move in antiparallel directions (towards or away from
each other), despite their strongly correlated mobility; some evidence for this has also been
seen in simulations [12]. The transverse component S�uT (thin dotted line) has a slight increase
near the first minimum of g(r), but otherwise shows little dependence on g(r).

At larger separations, particle motion is still less correlated. If the particles were
in a dilute suspension and long-range interactions were solely due to the hydrodynamic
behaviour of the solvent, the correlation functions should decrease as 1/�r . This would
also be the case for a homogeneous viscoelastic medium [25], although the localized
rearrangements observed previously show that motion in these dense colloidal samples is
spatially inhomogeneous [14, 15]. To check this, we plot the correlation functions on semilog
and log–log axes in figure 3 for φ = 0.56 at two different timescales. The top right graph
shows that the decay is close to 1/�r for short timescales; we find similar behaviour for all
liquid samples at timescales �t < 100 s. The behaviour characteristic of longer timescales
relevant for cage rearrangements is shown in the bottom graphs. On the semilog graph, the
decays follow straight lines for both functions out to �r ≈ 25 μm, indicating exponential
decay with characteristic length scales ξδu = 8.5 μm = 3.6σ and ξ�u = 6.1 μm = 2.6σ . For
this sample, the decay lengths vary in the range ξδu = 7.6 ± 0.9 μm and ξ�u = 6.7 ± 0.9 μm
when �t is varied from 50–5000 s. The exponential decay demonstrates that dense colloidal
suspensions on these length scales and timescales do not behave as continuum viscoelastic
materials [26, 27].

At large �r , a downturn is seen in the correlation functions (bottom graphs in figure 3).
This is due to a counterflow, similar to what was seen in simulations [13, 29]. This counterflow
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Figure 3. Semilog and log–log plots of S�u (solid lines) and Sδu (dashed lines) at two different �t
as indicated, for φ = 0.56, a supercooled fluid. The dotted 1/�r lines are drawn as a guide to
the eye in the log–log plots. The dotted fit lines shown in the lower left plot have decay lengths
ξδu = 8.5 μm and ξ�u = 6.1 μm. The downturn at long �t is not fitted, and is described in the text.

has been interpreted previously as the medium’s response to the transient motion of a particle,
although it is less clear how this may apply in the case of localized motions [13, 29]. The
counterflow may be due to the presence of the cover slip (>30 μm away), although the
correlation functions do not change significantly when the data is split into two subsets: one
closer to the coverslip and one further away. The counterflow results in a slight anticorrelation
in both S�u and Sδu at �r ≈ 40 μm (not shown). In all cases the exponential decay occurs
over a decade in �r before the counterflow cuts off the correlation. At still larger length scales
(�r � ξ�u, ξδu), the correlation functions must decay as 1/�r , as on a sufficiently large length
scale the colloidal suspension will appear to be homogeneous. However, we do not have data
at large enough �r to see 1/�r decay, and at large separations the amplitude of the correlation
functions would be quite small and difficult to measure.

To look for a possible growing length scale, we extract the correlation decay lengths for
S�u and Sδu in samples with different volume fractions, with the results shown in figure 4. The
decay lengths increase only slightly as φg is approached. Within the error bars, ξ�u is consistent
with a constant value ξ�u ≈ 3σ . ξδu doubles over the range φ = 0.46–0.56, and this is sufficient
to account for the increase in the size of clusters of mobile particles seen in previous work [14];
however, we see no evidence in our data for or against a divergence of ξδu at φg. For these
samples, the relaxation timescale grows by a factor of 60 from φ = 0.46 to 0.56, which is
a much more dramatic change [17]. Intriguingly, this slight increase in ξδu gives new insight
into the φ dependence of Sδu for the supercooled fluids, seen in figure 1(d). If we assume
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Figure 4. Volume fraction φ dependence of the dynamic length scales, for colloidal liquids and
glasses. The length scales are determined by a fit to the exponential decay of correlation functions
such as those shown in figure 3; the error bars indicate variability in determining the length scales at
different �t s. (The data points for φ = 0.52 and φ = 0.56 are horizontally offset from each other
slightly for clarity.)

Sδu(�r) = Aφ(�t) exp(−�r/ξδu), we find that the maximum value (with respect to �t) of
Aφ(�t) is a constant, approximately 0.75 ± 0.05, independent of φ. Thus, the increasing
height of Sδu as φ increases, seen in figure 1(d), is primarily due to the increase in ξδu and thus
an increasing value of exp(−�rnn/ξδu), using the nearest-neighbour separation �rnn.

We can compare our length scales ξ�u and ξδu with length scales obtained from computer
simulations of glass-forming systems. The values that we find for φ = 0.56 (ξ�u ≈ ξδu ≈ 3σ )
are slightly larger than that seen in simulations of hard spheres (ξ�u = 2.3σ, ξδu = 1.4σ );
the simulations had a higher polydispersity, and thus may have been further from the glass
transition at φ = 0.56 [13]. Simulations of Lennard-Jones particles did not notice exponential
decay [16], and instead computed a length scale by calculating (in our notation)

ξ ′(�t) =
( 〈u2〉

〈u〉2
− 1

) ∫ ∞

0
d�r Sδu(�r,�t). (12)

The term in parenthesis is qualitatively similar to the non-Gaussian parameter α2, and over the
range of liquids shown in figure 4 varies from 0.35 (at φ = 0.46) to 0.70 (at φ = 0.56). We
calculate ξ ′ for our data by using the form Aφ(�t) exp(−�r/ξδu) for Sδu with our measured
values for A and ξδu , and using the value of �t which maximizes Sδu (and thus maximizes
ξ ′). We find that ξ ′ increases from 0.9 to 4.1 μm ≈ 0.4σ–1.7σ as the glass transition is
approached. These values are larger than those seen in the simulation (0.05–0.32 in Lennard-
Jones units) [16].

Earlier work has seen evidence that structural properties of the sample are slightly
correlated with particle mobility [17, 30]. This then suggests that the exponential length scales
seen in the correlation functions may relate to spatial correlations of structural properties.
We have computed a spatial correlation function SδV similar to Sδu (3), except looking at
fluctuations δV of the Voronoi volume V of each particle. The Voronoi volume is a geometric
way of partitioning space, so that each particle claims the volume that is closer to its centre
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than to the centre of any other particle. Particles with slightly larger Voronoi volumes are, in
some sense, seeing a slightly smaller local volume fraction, and this is correlated with a slightly
enhanced mobility [17]. The correlations SδV do decay exponentially (not shown), with a length
scale of 5.7–6.3 μm for the four liquid samples that we consider (∼2.5σ ). Strikingly, we see
no clear volume fraction dependence of this length scale. Furthermore, this length scale is
quite similar to the length scales seen for S�u . The lack of a clear connection to the length scale
for mobility (ξδu) suggests that the correlation between the structure and the mobility, while
present, is not the entire story; the cooperative motions are influenced by more factors than just
the local volume [30, 31].

For the glassy samples, the behaviour is strikingly different. As discussed before, our
glassy samples are ageing, although for the duration of the experiment, little ageing occurs.
(We consider samples with a large age tw = 3 × 104 s and timescales �t � tw.) For our data,
and for lag times �t < 5000 s, almost all particle motion consists of particles moving back
and forth within their cages. S�u and Sδu have a low amplitude, as shown in figures 1(c), (d) and
figure 2(b), indicating that most of the motion is uncorrelated. For the glassy samples, S�u > Sδu ,
similar to the liquids at small �t . Figure 2(b) also shows that the correlation functions oscillate
much less, and thus the local structure [g(r)] has a only a minor role for glasses. Another
intriguing difference is that S�uT > S�uL , indicating that fluctuations in the transverse directions
are more strongly correlated than in the longitudinal direction.

The correlated motion that is present in the glasses, while of small amplitude, is rather
long-ranged. Similar to the supercooled fluids, the correlation functions for glasses show
exponential decay over a range of timescales �t . The length scales for the decay are plotted
in figure 4. They are significantly larger than the length scales associated with the supercooled
fluids; for the glasses, ξv,δv = 8–20 μm ≈ 3.5σ−8.5σ . The data shown in figure 4 also indicate
that the scalar correlation lengths ξδu are noticeably larger than the vector correlation lengths ξ�u ,
a trend which is the opposite to that of the liquids. The existence of this long-range correlation
is sensible, given that the glasses are more densely packed: while most motion is localized and
uncorrelated, particles can move slightly if there is long-range cooperation, even if they then
move back (in order that there are no rearrangements). At present, however, it is unclear if
these correlation length scales correspond to the intrinsic motion of the frozen glassy system,
or if they are connected with the ageing process [22]. The previous observations that clusters of
‘mobile’ particles are smaller is consistent with the low amplitude of the correlations [14, 22].

Unlike the correlated motion in glasses, the structural correlations in the glassy samples
are not long-ranged. The length scale for SδV , the correlation function of the fluctuations of
Voronoi volumes, stays comparable to that of the liquids (ξδV ∼ 5.9–7.7 μm for the glasses).
While there is very little change of this length scale with φ, we do note that the two samples
with the largest values of ξδV correspond to the same two samples with the largest values of ξ�u ,
again suggesting a connection between the structure and correlated particle motion [32].

4. Conclusions

By measuring the positions of several thousand particles over several hundred time steps, we
have found that particle motion is correlated over distances of 3–4 particle diameters. In
particular, particles undergoing cage rearrangements have anomalously large displacements,
and these are highly spatially correlated. We note that the largest degree of correlation exists at
the timescales corresponding to cage rearrangements, but that our observations do not preclude
the sample from acting differently at very long timescales. All of our data is taken at timescales
�t < τα, so we are not able to quantify the behaviour on timescales corresponding to alpha
relaxation.
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At timescales similar to the cage-rearrangement timescale, the correlations decay
exponentially with separation �r . At very large �r , we would expect the correlations to
recover a 1/�r dependence, as predicted for homogeneous viscoelastic media [26, 27], at
any timescale. This dependence is seen at short timescales in our data (figure 3), suggesting
that the instantaneous response may be more continuum-like [33]. This is sensible; in such
short timescales, �t 
 τα , so these motions are not related to dynamical heterogeneities, and
do not lead to flow of the sample. Rather, these are small-amplitude affine deformations. It is
intriguing that, on the cage-rearrangement timescales, our image volume is not large enough to
see the 1/�r behaviour, suggesting that the appropriate coarse-graining length scale is bigger
than ∼25σ .

The differing behaviour of the two correlation functions that we examine suggests
that these rearrangements are composed of regions of mobile particles (particles with large
displacements), but that the motions involve particles moving in many directions, rather than
all of the particles moving in one coherent direction. This is especially clear as the correlations
between the directions of motion of particles (S�u) strongly depend on the pair correlation
function; within a group of mobile particles, their motions are often strongly directionally
correlated, but also frequently not directionally correlated. This is consistent with particles
moving in necklace-like loops, for example, as seen in [28], and the mixing motions described
in [17].

The correlations become increasingly long-ranged as the glass transition is approached, as
seen in two new correlation lengths ξδu and ξ�u . This suggests that rearrangements involving
regions consisting of a small number of particles become difficult or impossible as the volume
fraction increases, which would explain the growth of the viscosity as the glass transition is
approached. The size of these regions, quantified by the two correlation lengths ξ�u and ξδu , are
direct experimental evidence for dynamical length scales near the glass transition.
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