
PAPER www.rsc.org/softmatter | Soft Matter

D
ow

nl
oa

de
d 

by
 E

m
or

y 
U

ni
ve

rs
ity

 o
n 

14
 F

eb
ru

ar
y 

20
11

Pu
bl

is
he

d 
on

 2
2 

N
ov

em
be

r 
20

10
 o

n 
ht

tp
://

pu
bs

.r
sc

.o
rg

 | 
do

i:1
0.

10
39

/C
0S

M
00

75
6K

View Online
Spatial and temporal dynamical heterogeneities approaching the binary
colloidal glass transition†

Takayuki Narumi,a Scott V. Franklin,b Kenneth W. Desmond,c Michio Tokuyamad and Eric R. Weeks*c

Received 31st July 2010, Accepted 3rd November 2010

DOI: 10.1039/c0sm00756k
We study concentrated binary colloidal suspensions, a model system which has a glass transition as the

volume fraction f of particles is increased. We use confocal microscopy to directly observe particle

motion within dense samples with f ranging from 0.4 to 0.7. Our binary mixtures have a particle

diameter ratio dS/dL ¼ 1/1.3 and particle number ratio NS/NL ¼ 1.56, which are chosen to inhibit

crystallization and enable long-time observations. Near the glass transition we find that particle

dynamics are heterogeneous in both space and time. The most mobile particles occur in spatially

localized groups. The length scales characterizing these mobile regions grow slightly as the glass

transition is approached, with the largest length scales seen being � 4 small particle diameters. We also

study temporal fluctuations using the dynamic susceptibility c4, and find that the fluctuations grow as

the glass transition is approached. Analysis of both spatial and temporal dynamical heterogeneity show

that the smaller species play an important role in facilitating particle rearrangements. The glass

transition in our sample occurs at fg z 0.58, with characteristic signs of aging observed for all samples

with f > fg.
1. Introduction

As the temperature of a glass-forming liquid is lowered, the

viscosity rises by many orders of magnitude, becoming experi-

mentally difficult to measure, with little change in the structure.1–3

The origin of the slowing dynamics is not yet clear, despite much

prior work. One intriguing observation is that as a sample

approaches the glass transition, the motion within the sample

becomes spatially heterogeneous.4–8 While overall motion within

the sample slows, some regions exhibit faster dynamics than the

rest, and over time these mobile regions appear and disappear

throughout the sample.9 Particles within the mobile region move

cooperatively, forming spatially extended clusters and strings.10

The length scale of these regions grows as the glass transition is

approached.6,10–13

One technique for studying the glass transition is the use of

colloidal suspensions.14 These are composed of small solid

particles suspended in a solvent. The particles need to be small

enough to undergo Brownian motion, so particle diameters are

typically 10 – 5000 nm. The key control parameter is the volume

fraction f. For a monodisperse sample (all particles similar in

size), the sample becomes glassy for f > fg z 0.58.14,15 The glass

transition in colloidal samples has been studied extensively by

light scattering, microscopy, and other techniques. Colloidal
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samples exhibit many behaviors seen in molecular glasses, such

as dramatic increases in viscosity,16,17 strongly slowing relaxation

time scales,15,18–23 microscopic disorder,24 spatially heterogeneous

dynamics,25–28 aging behavior for glassy samples,20,29–34 and

sensitivity to finite size effects.35,36 Light scattering allows careful

study of the average behavior of millions of colloidal particles,

while microscopy techniques observe the detailed behavior of

a few thousand particles. These complementary techniques have

resulted in connections between different aspects of glassy

behavior; for example, showing that aging is temporally and

spatially heterogeneous,29,30 and connecting dynamical hetero-

geneity with the slowing relaxation time scales.15,20,26,27,37

In this paper, we study the glass transition of binary colloidal

suspensions using confocal microscopy. We use binary suspen-

sions (mixtures of two particle sizes) to inhibit crystallization.

This allows us to take data over many hours, a time scale in

which a monodisperse sample would crystallize.38,39 Further-

more, this lets us investigate the role the two particle species play

in the dynamics; prior work has suggested that small particles

play a lubricating role in the local dynamics.40 Prior studies have

also seen a connection between the local structure and the

mobility of particles.13,41–44 Using a binary sample results in more

obvious structural variations due to spatial variability of the

composition, helping highlight how structure influences the

dynamics.

The confocal microscope enables direct visualization of the

interior of the sample, and we follow the motion of several

thousand colloidal particles within each sample.45 Particles move

in spatially heterogeneous groups, and we characterize this

motion using two-particle two-time correlation functions46–48

that have previously been used on monodisperse suspensions.49

From these we extract a length scale for the heterogeneity, which

increases as the glass transition is approached. By simultaneously

tracking both large and small particles, we can observe the
This journal is ª The Royal Society of Chemistry 2011
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similarities and differences between the two species’ dynamics. In

particular, we see that small local composition fluctuations

influence mobility. As might be expected, regions with more large

particles tend to be less mobile, while those with more small

particles tend to be more mobile. Additionally, we study

temporal heterogeneity using a different correlation function, the

dynamic susceptibility c4,50–52 which has not been previously

applied to colloidal data. As measured by this correlation func-

tion, the temporal heterogeneity increases as the glass transition

is approached.
2. Experimental method

We prepare suspensions of poly-(methyl-methacrylate) (PMMA)

colloids stabilized sterically by a thin layer of poly-12-hydrox-

ystearic acid.14 We use a binary mixture with a large particle

mean radius aL ¼ 1.55 mm and small particle mean radius aS ¼
1.18 mm, the same size particles used in a prior study by our

group.35 The polydispersity is 5%; each individual particle species

can crystallize in a monodisperse suspension. Separately from the

polydispersity, the mean particle radii each have an uncertainty

of �0.02 mm. The number ratio of small particles to large

particles is NS/NL ¼ 1.56, resulting in a volume fraction ratio fS/

fL z 0.70. The control parameter is the total volume fraction

f ¼ fS + fL. Crystallization and segregation were not observed

to occur during the course of our measurements. All particles are

fluorescently dyed and suspended in a density- and index-

matched mixture of decalin and cyclohexyl bromide to prevent

sedimentation and allow us to see into the sample. Particles are

slightly charged as a result of the dyeing process and this

particular solvent mixture.39 Nonetheless, we use the hard sphere

volume fraction f as the control parameter. The hard sphere

radii (aL,aS) are determined from diffusion measurements of the

individual species at dilute concentrations (f < 0.01).

Suspensions are sealed in microscope chambers and confocal

microscopy is used to observe the particle dynamics at ambient

temperature.45,53 A representative two-dimensional image is
Fig. 1 A two-dimensional image of our sample taken by a confocal

microscope. The scale bar represents 10 mm.

This journal is ª The Royal Society of Chemistry 2011
shown in Fig. 1. A volume of 55 � 55 � 20 mm3 can be taken at

speeds of up to 1 Hz. (As will be shown later, in these concen-

trated samples, particles do not move significantly on this time

scale.) To avoid influences from the walls, we focus at least 25 mm

away from the coverslip.

Within each three-dimensional image, we identify both large

and small particles. This is accomplished with a single convolu-

tion that identifies spherical, bright regions;54 the convolution

kernel is a three-dimensional Gaussian with a width chosen to

match the size of the image of a large particle. Each local

maximum after the convolution is identified as a particle.54 The

distribution of particle brightnesses is bimodal with little overlap,

and so small and large particles can be easily distinguished. Our

method is the same as is often used to measure particle positions

in two dimensions, which normally achieves sub-pixel resolution

in particle positions.54 However, given that a single convolution

kernel is used to identify both particle types, when applied to our

binary samples we do not achieve sub-pixel accuracy. Instead,

our uncertainty in locating particle positions is linked to the pixel

size and is 0.2 mm in x and y, and 0.3 mm in z. We do have

accurate discrimination between large and small particles with

this method, with less than 1% of the particles misidentified,

checked by visual inspection. For a few particles, it is hard to

distinguish if they are large or small (because they are small but

unusually bright, or large but unusually dim). These particles are

assigned to the size that they appear to be the majority of the

time.

After identifying the particle positions, they are tracked using

standard software.53,54 The key requirement is that particles

move less between time steps than their interparticle spacing,

which is easily satisfied in our dense glassy samples. We take

images once every 10–150 s, depending on the volume fraction, in

each case making sure that the acquisition rate is sufficiently

rapid to capture all particle movements.
3. Results and discussion

3.1. Structural characteristics

We begin by looking at the structure of the binary sample. Shown

in Fig. 2 is the pair correlation function g(r) of a sample with

volume fraction f ¼ 0.57. g(r) relates to the likelihood of finding

a particle a distance r away from a reference particle. The three

curves correspond to small-small, small-large, and large-large

particle pairs, and their first peak positions are at approximately

2aS ¼ 2.36 mm, aS + aL ¼ 2.73 mm, and 2aL ¼ 3.10 mm. The first

peaks are fairly broad and noisy due to the uncertainty in

locating particle positions, and also in part due to the particle

polydispersity. To calculate each individual curve A–B (where A

and B stand for small or large), we consider in turn each particle

of type A as the reference particle. We compute the distance r

from that reference particle to all particles of type B (where A and

B might be the same or might be different), and histogram the

results with a resolution dr¼ 0.08 mm. The histogram is compiled

letting each particle of type A take a turn as the reference particle.

The final histogram is divided by 4pr2drnB, where nB is the

particle number density of particles of type B; this normalization

ensures that g(r) / 1 for each curve, as for large separations

there are no correlations between particle positions.
Soft Matter, 2011, 7, 1472–1482 | 1473
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Fig. 2 The pair correlation function g(r) for a sample with volume

fraction f ¼ 0.57. The different curves are for small-small pairs, small-

large pairs, and large-large pairs, as indicated. Due to particle tracking

uncertainties (�0.2 mm in x and y,�0.3 mm in z), the measured separation

r between any pairs of particles has an uncertainty of �0.5 mm, which

significantly broadens the peaks of g(r), diminishes their height, and

results in noise (fictitious multiple peaks) at the peak positions.
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3.2. Dynamical slowing

We wish to show how the motion of particles slows as the volume

fraction increases and approaches the glass transition. Fig. 3
Fig. 3 (Color online) A log-log plot of mean square displacement versus

time lag for large particles (a) and small particles (b). Note that our

resolution means we cannot accurately measure mean square displace-

ment values less than 0.1 mm2, and thus the plateau height of curves for

the highest volume fraction data is set by this limit, rather than the

dynamics. However, the slight upturn for those curves at large values of

Dt is above our resolution limit and thus real. Due to noise in hDz2i, the

data shown are hDx2 + Dy2i.

1474 | Soft Matter, 2011, 7, 1472–1482
shows results of the mean square displacement (MSD) hD~r2
i iof

large and small particles, where D~ri ¼ D~ri(Dt) denotes the

displacement of i -th particle in lag time Dt, and the brackets

indicate an average over all particles and times observed. Fig. 3

shows that as the volume fraction increases, particle motion

slows significantly, as expected. At f ¼ 0.4, small particles take

tens of seconds to move a distance a2
S ¼ 1.4 mm2; at f ¼ 0.54 the

time has grown to more than 104 s. For the lowest volume

fraction samples, comparing the two particle species, we find that

hDr2
Si/hDr2

Li z aL/aS, as expected from the Stokes–Einstein-

Sutherland equation.55,56

As the volume fraction increases, the MSD plots show

a characteristic ‘‘cage trapping’’ plateau. Particles cannot diffuse

freely, but instead are ‘‘caged’’ by their nearest neighbor parti-

cles.41,57–61 The upturn in the MSD curve is identified with rear-

rangements of the cage, allowing the particle to move to a new

location, perhaps caged by different particles. Although the

smaller particles diffuse faster than the large particles, MSD

curves for both show upturns at similar time scales, indicating

that their dynamics are strongly coupled.13,40 Note that the height

of the plateaus (0.1–0.2 mm2) are larger than in prior work,27

because of the larger particle tracking noise present in this binary

experiment as compared to the prior work with monodisperse

particles. The noise results in apparent displacements hDx2i ¼
hDy2i ¼ (0.2 mm)2, independent of Dt, and so the minimum reli-

able value for Fig. 3 is limited to �0.08 mm2. In particular the

difference between the f ¼ 0.58 and f ¼ 0.66 data is probably

not significant, but due to higher tracking errors for the higher

volume fraction data. The noise prohibits careful analysis of the

mean square displacement data along the lines of prior work.62,63

For the samples with f $ fg z 0.58, the MSD curves are

nearly flat, suggesting that on our experimental time scales, these

samples behave as glasses. Glasses are non-equilibrium systems,

so that physical properties for glasses depend on the preparation

history in general and, in particular, the time since they were

initially formed. This time-dependence is known as aging, and

can be quantified by examining the MSD at different times since

the start of the experiment.29,33,40 Fig. 4 shows MSD data from f

¼ 0.59. The trajectory data are broken into three equal duration

segments and the MSD calculated within each segment; for the

older segments, the MSD curve decreases in height (see the

caption for details). The sample is most active immediately after

being formed, and continues to slow down as time elapses. The

aging of the MSD appears in samples for f $ 0.59, while no

samples for f # 0.58 show aging. From the onset of aging, we

conclude that the glass transition point is at volume fraction f z
0.58, similar to that seen for monodisperse samples.14 Note that

our particle size uncertainty of �0.02 mm (radius) leads to

a systematic volume fraction uncertainty, so our estimate is fg ¼
0.58 � 0.02 as a comparison with other work.

Particles involved in a cage rearrangement event move signif-

icant distances compared to when they are caged, and prior work

noted that the distribution of displacements is unusually broad

on the time scale of the rearrangement.41,64 This is quantified by

calculating the non-Gaussian parameter a2(Dt), which is defined

as

a2ðDtÞ ¼ hDx4i
3hDx2i � 1; (1)
This journal is ª The Royal Society of Chemistry 2011
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Fig. 4 (Color online) MSD plot for the large particles from a f ¼ 0.59

sample. The three curves correspond to time regimes with 0 < t < 4800 s,

4800 < t < 9600 s, and 9600 < t < 14400 s. Note that in the first time

regime, the sample ages appreciably, so the ‘‘early’’ mean square

displacement data should be interpreted with caution. The time-depen-

dence of Dr2 is clearly seen, indicating the presence of aging. As f ¼ 0.59

is the lowest volume fraction in which this behavior is seen, we conclude

that the glass transition occurs at fg z 0.58. Due to noise in hDz2i, the

data shown are hDr2i ¼ hDx2 + Dy2i.
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where Dx ¼ x(t + Dt) � x(t) denotes the x displacement for time

lag Dt,65 and the angle brackets indicate an average over all

particles and all initial times t. If the distribution of displace-

ments Dx is Gaussian, then a2 ¼ 0 by construction. If large

displacements are more common than would be expected from

a Gaussian distribution, then a2 > 0. Fig. 5 shows the results of
Fig. 5 (Color online) A semi-log plot of the non-Gaussian parameter a2

versus lag time for large particles (a) and small particles (b). The curves

for f ¼ 0.40,0.42 are essentially indistinguishable. a2 is calculated from

the x displacements.

This journal is ª The Royal Society of Chemistry 2011
the non-Gaussian parameter (NGP) for large and small particles.

The curves peak at time scales where cage rearrangements are

most important.10,27

a2 is fairly sensitive to experimental noise, although fortu-

nately the ‘‘signal’’ this parameter measures comes from particles

moving large distances, which are less susceptible to particle

position uncertainty. The differences between the data shown in

Fig. 5 and the data of ref. 27 are probably more due to noise and

uncertainties in measuring f, rather than systematic differences

between our binary experiments and the prior monodisperse

experiments.27 The peak heights of a2 for our small particles are

similar to those seen in ref. 27, for roughly similar volume frac-

tions. One difference is that ref. 27 found that for glassy samples,

a2 started high (1–2) and decreased steadily, whereas in our

current data, a2 remains fairly small for all Dt. This is probably

due to our noise, as for glassy samples, few particles move

distances large enough to be outside of our particle tracking

uncertainty.

Fig. 5 also reveals that the motions of the small particles are

more dynamically heterogeneous, with the maximum NGP

peaking above 1.5 for the small species but only reaching 0.8 for

the large species. This is consistent with recent observations of

aging binary colloidal glasses, which likewise found the small

particles had more non-Gaussian motion.40

From Fig. 3 and 5 we conclude that the dynamics of the large

and small particles are qualitatively the same, although with

small quantitative differences. In particular, the time scale over

which particles escape cages is the same for both, as is the time of

peak non-Gaussianity. In much of the subsequent analysis,

therefore, we consider both species together in order to obtain

better statistical validity.
3.3. Local environment influences mobility

We wish to understand the origins of dynamical heterogeneity.

For a hard-sphere system, or an overdamped system such as our

experimental colloidal suspension, the only variable is the local

structure. Clearly structure has some relation with particle

mobility,43,44 although this relationship may be difficult to see

and not directly predictive in nature.42 Prior work found that

more disordered environments are weakly correlated with higher

particle mobility,33,41 and a recent study of aging binary colloidal

glasses found a relation between the local composition and the

mobility.40

We quantify a particle’s local environment by counting its

nearest neighbors NNN, defined as particles closer than the first

minimum of the pair correlation function for the large particles,

4.1 mm (Fig. 2), and distinguish between large and small neigh-

bors. Fig. 6 shows that the number of neighbors of a given type

has a strong influence on the mobility of a particle. (All particles

have both small and large neighbors, and this figure focuses on

the effect of having NNN small neighbors or large neighbors,

independent of the other species. Of course, having more

neighbors of one type means fewer neighbors of the other type.)

Particles of both types with more large neighbors have, on

average, a lower mobility, while small particles with more small

neighbors have a larger mobility. These observations agree with

studies of aging in binary colloidal glasses40 and simulations of

binary soft disks.13 The influence of small neighbors on large
Soft Matter, 2011, 7, 1472–1482 | 1475
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Fig. 6 (Color online) Large particle mobility as a function of the number

of large and small nearest neighbors NNN. The panel (b) shows small

particle mobility. The mobility is sensitive to the number of large

neighbors, decreasing sharply as the number of large neighbors increases.

The number of smaller neighbors has a weaker, yet measurable, impact.

These data are for volume fraction f ¼ 0.53, using a time scale Dt¼ 3780

s to define displacements. The scale bars are the standard deviation of the

observations of Dr2 for each value of NNN divided by
ffiffiffiffiffi
N
p

, where N is the

number of observations used to determine Dr2 for the point plotted. Note

that the two graphs have different vertical scales.
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particles is less clear, although we note that in all samples the

initial upward trend for NNN < 4, that adding a few small

neighbors increases large particle mobility, is seen in several data

sets and is consistent with prior work that suggested that small

particles can ‘‘lubricate’’ large particles.66

The data of Fig. 6 are not monotonic in their dependence on

NNN. We are not sure why this is, although it is seen in data sets

at different f (that is, the data shown in the figure are repre-

sentative). One possibility might be that around a particle of

a given size, a certain number of large and small neighbors might

pack especially well (thus decreasing mobility) or especially

poorly (thus increasing mobility). Prior experiments have seen

this connection between local packing and mobility.41 Another

possibility is simply that our data are insufficient to average

over all possible local environments, and the non-monotonic

behavior is a result of our spatially and temporally heterogeneous

data.
Fig. 7 (Color online) Snapshots of system for f ¼ 0.54 (upper) and f ¼
0.66 (bottom). The red (dark gray) spheres are small mobile particles, and

the blue (medium gray) spheres are large mobile particles. The small light

gray spheres are the less mobile particles, drawn at half-scale so that the

mobile spheres are easier to see. The mobile particles are defined as those

making the largest displacements at this particular moment in time; see

text for further details. We set the time lag for the displacement as the

cage breaking time scale (the peak time of the NGP tNGP) which is Dt* ¼
3000 s for f ¼ 0.54 and t* ¼ 4000 s for f ¼ 0.66.
3.4. Cooperative motions

Prior work has shown that the higher mobility molecules in

a supercooled liquid are distributed in a spatially heterogeneous

fashion.5,7,8,10 In monodisperse colloidal systems, direct imaging

using microscopy found that particles rearrange in cooperative

groups.25–27 Following the prior work, we characterize the

cooperative nature of colloidal rearrangements by studying the

dynamics over a time scale Dt* that corresponds to the maximum
1476 | Soft Matter, 2011, 7, 1472–1482
of the NGP.10,27 The maximum displacement of a particle over

that time Di is defined as

DiðtÞ :¼ max
t;tþDt*

ðj~riðt2Þ �~riðt1ÞjÞ (2)

where maxt,t+Dt*(X) is the maximum value of X using times t1, t2

such that t # t1 < t2 # t + Dt*. Taking the maximum displace-

ment results in a quantity that is less sensitive to random

Brownian motion than the ordinary displacement Dr. Following

prior work,10,27 a threshold D*(f) is chosen such that on average,

5% of the particles at any given time have Di(t) > D*. These

particles are termed ‘‘mobile particles’’ and generally are the ones

undergoing cage rearrangements. (Note that at any particular

time, the fraction of particles matching this definition is not

required to be 5%.53)

Fig. 7 shows snapshots of our system, highlighting the mobile

particles. Clusters of these mobile particles are visible, in agree-

ment with previous work which found similar mobile

regions.10,27,40 The clusters are somewhat smaller than those seen

previously in single-component colloidal suspension.27 One

possible explanation is that the dynamics in binary mixtures are

less spatially heterogeneous. An alternate explanation is that the

current experiments might not cover the same volume fraction

range as the prior experiments; due to the difficulties in calcu-

lating volume fractions, it is hard to compare precise volume
This journal is ª The Royal Society of Chemistry 2011
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Fig. 8 (Color online) Plot of the correlation functions in which the

distance R0 ¼ aS + aL ¼ 2.73 mm is set at the sum of the particle radii. (a)

represents the vector correlation [eqn (3)], and (b) the scalar correlation

[eqn (4)].
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fractions between our binary samples and the prior mono-

disperse work.27 Our current result is in qualitative agreement

with the results of a simulation study for polydisperse hard-disk

systems,67 which found that polydispersity reduces dynamic

heterogeneity. It is also apparent in Fig. 7 that the small particles

dominate the motions for the lower volume fraction (top, f ¼
0.54) whereas the two species contribute more equally in the

glassy sample (bottom, f ¼ 0.66).

3.5. Length scales of spatial dynamical heterogeneity

Pictures such as Fig. 7 are qualitative evidence of dynamical

heterogeneity. For quantitative information, we consider the

vector and scalar spatial-temporal correlation functions48

Svec(R,Dt) and Sscl(R,Dt) defined as

SvecðR;DtÞ ¼

D
D~r

i
,D~r

j

E
pairD

D~r 2

E (3)

SsclðR;DtÞ ¼
�
dridrj

�
pairD

ðdrÞ2
E : (4)

The vector function Svec(R,Dt) characterizes correlations in the

vector displacements D~ri ¼~ri(t + Dt) �~ri(t); the similar function

Sscl(R,Dt) uses the scalar displacement dri ¼ |D~ri| � h|D~ri|i. The

angle brackets hi denote an average over all particle pairs with

separation R at initial time t as well as an average over t. The

denominators of both correlation functions are averaged over all

particles and time, and do not depend on R. The correlation

function defined by eqn (3) indicates a vector correlation, and

that defined by eqn (4) a scalar correlation. If particles correlate

perfectly, the correlation functions are unity. These correlation

functions give information about spatial correlations for fixed

lag time Dt, and about temporal dependence of the correlations

for fixed separation R. We calculate these functions for all pairs

of particles, without concern for the particle sizes, both to

improve our statistics and because we do not find significant

differences for large and small particles only. Most of the

‘‘signal’’ of correlated motion comes from the particles under-

going larger than average displacements, and so the results are

less sensitive to the particle tracking uncertainties than the mean

square displacement.

Fig. 8 shows the lag time dependence of these correlation

functions, in which the distance R is set as the first peak distance

of the small-large pair correlation function g(r) (the solid line in

Fig. 2). At time scales larger than those shown in Fig. 8, the

results become too uncertain, due to lack of data. In intermediate

volume fraction region (f < fg), both correlation functions

increase with Dt. For the two lowest volume fractions (f ¼
0.42,0.49), the correlation functions eventually decrease at large

Dt, but our data do not extend to large enough Dt to see this for

higher volume fractions. Overall, in conjunction with Fig. 3,

Fig. 8 suggests that larger motions are more correlated with the

motions of their neighboring particles. This agrees with prior

experiments.27,49 The amplitude of the correlation decreases as f

increases, with the exception of the f ¼ 0.49,0.53 data which are

similar.
This journal is ª The Royal Society of Chemistry 2011
For glassy samples (f > 0.6) the correlation functions are

small, suggesting that there is little correlation of the motion of

neighbors. This is both because there is little overall motion in

glassy samples (see Fig. 3) and also the motion that does occur is

dominated by Brownian motion within the cage, which is less

correlated that the motions responsible for cage rearrange-

ments.41 Furthermore, it is probably erroneous to even consider

time-averaged correlation functions for glassy samples, as in this

current work the dynamics slow with time (Fig. 4), and so a time

average is of dubious validity. (Earlier work studied well-aged

samples where the dynamics were only slow aging, and thus

a time average was more sensible.49)

To consider the spatial dynamical heterogeneities, we plot the

correlation functions as a function of R in Fig. 9 (for f ¼ 0.54;

results for other volume fractions are similar). For small sepa-

rations around R ¼ 3.5 mm, there is a dip in the correlation

functions, which corresponds to the dip in the small–large pair

correlation function at the same position (solid line in Fig. 2); the

peak around R ¼ 2.8 mm likewise corresponds to the peak of the

small–large pair correlation function. Thus, a particle’s motion is

correlated with that of its nearest neighbors, while particles

separated by a less structurally favorable distance are less likely

to have correlated motion.

We fit our data with an exponential function S x A exp(�R/x)

and extract the decay length x. Fig. 10 shows both the vector

(triangles) and scalar (circles) decay lengths as a function of the

volume fraction. The length scales are essentially constant until

close to fg z 0.58, when they show a sharp increase. Our data

are too noisy to draw conclusions about how the length scales

grow near fg, although simulations of binary Lennard-Jones

mixtures did not find a divergence.68 The largest length scale seen
Soft Matter, 2011, 7, 1472–1482 | 1477
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Fig. 9 Semi-log plot of the spatial correlation functions of f ¼ 0.53,

where the time lag is set as DtNGP ¼ 2000 s. The solid line is Svec(R,tNGP)

and the dashed line is Sscl(R,tNGP). The dotted line represents an expo-

nential function with a decay length of 5.8 mm, a good fit to both func-

tions in this particular case.

Fig. 10 The relationship between the length scales and the volume

fraction. Shown are the length scales for the vector correlation function

(open triangles) and the scalar correlation function (closed circles). The

symbols indicate the average value, and the error bars show the range of

values found for different lag times Dt. These length scales are extracted

from the correlation function for all particles (large + small).

D
ow

nl
oa

de
d 

by
 E

m
or

y 
U

ni
ve

rs
ity

 o
n 

14
 F

eb
ru

ar
y 

20
11

Pu
bl

is
he

d 
on

 2
2 

N
ov

em
be

r 
20

10
 o

n 
ht

tp
://

pu
bs

.r
sc

.o
rg

 | 
do

i:1
0.

10
39

/C
0S

M
00

75
6K

View Online
is z10 mm z 8aS z 6.5aL, similar to prior studies of mono-

disperse colloids.49 For f > fg, the scalar length seems large and

the vector length decreases, although as noted above, the data

should be treated with caution as the samples are aging.
Fig. 11 (Color online) Surface plot of c4 for large particles within

a sample with f ¼ 0.52.
3.6. Temporal dynamical heterogeneity

The prior subsection showed that the motion of colloidal parti-

cles in our dense samples are spatially heterogeneous. We now

study their temporal heterogeneity, using the four-point

susceptibility c4 which measures the correlation in dynamics

between any two points in space within some time window.50,52

The actual value of c4 is a measure of the average number of

particles whose dynamics are correlated, which in turn relates

back to the spatial heterogeneity.21
1478 | Soft Matter, 2011, 7, 1472–1482
Here we only compute the self contribution to c4, since it has

been shown to be the dominating term.50,52 The self part is

computed from temporal fluctuations in particle mobility, where

a particle is defined to be mobile if its displacement over some

time interval Dt is larger than some threshold distance DL.52

Using this definition, each particle at each time can be labeled

mobile or immobile and the fraction of mobile particles Q(t) can

be computed for each frame recorded. Q(t) varies from frame to

frame due to the spatial heterogeneity. The temporal fluctuations

in Q(t) are quantified by the self part to c4 and written as

c4 ¼ N[hQ(t)2it � hQ(t)i2t ], (5)

where N is the number of particles. N also varies from frame to

frame as particles move in and out of the field of view; we average

N over all frames and use hNi in eqn (5). (The factor of N arises

because the variance scales inversely with particle number.) Note

that c4 measures temporal fluctuations in mobility without

regard for the spatial correlations between mobile particles,

whereas the correlation functions Svec and Sscl studied in the

previous section measured spatial correlations of mobility

without regard for the temporal correlations. In a sense, then,

these two methods of analysis are complementary.

From eqn (5) it’s evident that c4 will depend on our choice of

DL and Dt as shown in Fig. 11, where c4 is plotted for the larger

particles within a f ¼ 0.52 sample for various values of Dt and

DL. This plot shows that c4 is characterized by a function that

has a maximum at (Dtmax, DLmax). This maximum in c4 indicates

a typical timescale Dtmax where the dynamics are most hetero-

geneous, and likewise DLmax indicates a typical length scale

distinguishing caged motions from cage rearrangements.

Fig. 12 shows plots of c4(Dt,DL¼DLmax) for the larger (a) and

smaller (b) particles. The value of c4 is larger in magnitude for

the smaller particles regardless of f, demonstrating that the

dynamics of the smaller particles are more temporally hetero-

geneous. Prior work by Lynch et al.40 showed a similar relative

mobility; our results build upon this by showing that smaller
This journal is ª The Royal Society of Chemistry 2011
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Fig. 12 (Color online) (a) is a plot of the susceptibility of large particles

for various packing fractions, and (b) is a plot of the susceptibility of

small particles for various packing fractions.

Fig. 13 (Color online) (a) Plot of the maximum of c4 as a function of f,

showing how temporal heterogeneity increases as f / fg z 0.58. The

inset in (a) shows the dependence of the dynamic heterogeneity length

scale x4 ¼ (cmax
4 )1/3 on f. (b) Plot of the dynamic heterogeneity time scale

as a function of f. (c) Plot of the length scale DL as a function of f. For

all panels, the symbols are as indicated in the legend of panel (b).
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particles also experience larger fluctuations, and thus exhibit

more anomalous spatial and temporal behavior. We also see that

c4 grows in amplitude as f increases, but then drops for the

glassy sample (f ¼ 0.59), matching the results of the prior

subsections where changes were seen at the glass transition.

The plots in Fig. 12 all show a maximum in c4 at a well defined

Dtmax, and that Dtmax for the various volume fractions occur at

timescales close to where a2 shows a maximum in Fig. 5 and

caging rearrangements become prominent (the ‘‘knee’’ in Fig. 3).

The coincidence of maxima in c4 and a2 suggests that local cage

rearrangements are the largest contributor to the temporal fluc-

tuations. Since small particles show larger fluctuations, we infer

that they may be largely responsible for facilitating local rear-

rangements, in agreement with the findings of Lynch et al.40

cmax
4 , Dtmax, and DLmax all vary with f; this dependence is

shown in Fig. 13. Both cmax
4 and Dtmax show an increase with f

illustrating that upon approaching the glass transition the

dynamic heterogeneity and the associated time scale increases.

The increasing time scale also suggests that local rearrange-

ments take longer at higher f, in agreement with the extended

plateau at higher f in Fig. 3. The characteristic length scale DL

decreases. This is in excellent agreement with prior work, which

showed that the displacements for cage rearrangements are

smaller as the glass transition is approached.41 In other words, it

requires a smaller displacement to be an anomalously mobile

particle. This can also be seen by comparing Fig. 3 and 5: for

samples with larger f, the mean square displacement has

a smaller value even when the non-Gaussian parameter is large,

showing that the distribution of displacements is overall nar-

rower despite the relatively large fraction of larger-than-

expected displacements.
This journal is ª The Royal Society of Chemistry 2011
Using the cmax
4 data in Fig. 13 (a) a correlation length scale can

be estimated by assuming that the correlations c4 measures are

correlated particles forming compact clusters. Since c4 is the

average number of correlated particles, then cmax
4 ¼ (4/3)px3

4,

where x4 is the radius of the cluster of correlated particles in units

of particle diameters d.52,69 The inset in Fig. 13 (a) shows the

dependence of x4 on f. Similarly as with the relaxation time, we

see a tendency in x4 to increase with f. The growth in x4 is about

a factor of 4 when the volume fraction is increased from a liquid

to a dense supercooled state. Our values of x4 are roughly the

same as those measured in a 2D fluidized granular bed on

approaching the jamming point.52 When compared to x shown in

Fig. 10 the diameter of these correlated clusters 2x4 is roughly the

same size.

The time scales Dtmax are analogous to the a relaxation time

scales measured in molecular supercooled liquids. In many cases

the a relaxation time scales are well described using either

a Vogel–Fulcher–Tammann (VFT) model or Mode-Coupling

Theory (MCT),1–3 although sometimes this is over a limited

range of temperatures70,71 and it can be hard to distinguish

between different functional forms.72

The first model, VFT, predicts that the time scales should obey

the form
Soft Matter, 2011, 7, 1472–1482 | 1479
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Fig. 14 (Color online) (a) Log-linear and (b) log-log plots of temporal

dynamical heterogeneity time scale, with fits to eqn (6) in panel (a) and

eqn (7) in panel (b). (c) Log-linear and (d) log-log plots of the c4 length

scales, with fits to eqn (6) in panel (c) and eqn (7) in panel (d).

Table 1 This table displays the fitting parameters found when fitting the
data to either a VFT scaling or a power law scaling. The uncertainties of
the fitting parameters are found by adjusting the fitting parameters until
they no longer provide reasonable fits

VFT: Dt0[sec] or x0
4 [d] E f0

All Dtmax 70 � 50 0.6 � 0.3 0.64 � 0.03
Big Dtmax 200 � 160 0.4 � 0.2 0.60 � 0.03
Small Dtmax 25 � 20 0.4 � 0.35 0.67 � 0.03
All x4 0.3 � 0.2 0.4 � 0.2 0.65 � 0.05
Big x4 0.5 � 0.2 0.3 � 0.2 0.66 � 0.07
Small x4 0.2 � 0.15 1.0 � 0.8 0.68 � 0.07

Power law: Dt0[sec] or x0
4 [d] g or d fc

All Dtmax 100 � 90 1.3 � 0.6 0.57 � 0.02
Big Dtmax 90 � 70 1.6 � 0.8 0.57 � 0.02
Small Dtmax 20 � 10 2.6 � 0.9 0.61 � 0.01
All x4 0.2 � 0.1 0.9 � 0.4 0.59 � 0.03
Big x4 0.5 � 0.1 1.4 � 0.5 0.62 � 0.04
Small x4 0.15 � 0.05 0.4 � 0.2 0.57 � 0.02
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Dtmax ¼ Dt0exp(E/(1 � f/f0)), (6)

where Dt0, E, and f0 are all fitting parameters. In the model Dt0 is

an attempt time to undergo relaxation events over some typical

length scale. For our experiment, this length scale would be on

the order of a particle diameter and the attempt time would be

the time it takes a particle to diffuse over this length scale in the

dilute limit. Using the Stokes–Einstein–Sutherland formula and

a viscosity of 2.18 mPa s (measured for the fluid in absence of

colloids) we estimate that at room temperature it should take the

small particles about 11 s and the large particles 25 s to diffuse

their own diameter.55,56 The fitting parameter f0 is the packing

fraction at which diffusive motion should cease. This should

occur at random close packing of f � 0.65 (using the value

appropriate for our binary suspension). However, as pointed out

by Brambilla et al.,21 there is a debate as to whether the diver-

gence predicted by VFT should occur at the jamming point or at

a slightly different packing fraction. To definitively show if this is

the case one would need very careful measurements extremely

close to the jamming point which is beyond the scope of this

paper. The final fitting parameter is E, the fragility, which is

a material dependent value. The fragility is a measure of how

sensitive the time scale is to small changes in volume fraction.

For a molecular system E measures how sensitive the relaxation

time is to small changes in temperature, and E ranges between x
1–100. Materials with low E values are termed fragile glass

formers and those with large E values termed strong glass

formers.1

The second model, MCT, predicts a scaling of

Dtmax ¼ Dt0(1 � f/fc)
g, (7)

where Dt0, g, and fc are the fitting parameters.73 fc in this model

takes a different meaning with the divergence predicted to occur

near the glass transition volume fraction, not at random close

packing. In light scattering experiments performed by Brambilla

et al. on 10% polydisperse colloidal samples they found fc z
0.59, slightly above the glass transition volume fraction.21 Their

work also showed that near the divergence point the dynamics

deviate from the predicted form, but that in the supercooled

regime the MCT equation describes the data well. They also

found a scaling exponent of g ¼ 2.5 � 0.1.

Fits to the measured time scales using the two fitting models

are shown in Fig. 14 (a) and (b), and the corresponding fitting

parameters are shown in Table 1. In the previous paragraphs

reasonable fitting values were given for some of the different

fitting parameters. The Dt0 values are significantly larger than the

dilute concentration diffusive time scales, for both the VFT and

MCT fits, although the agreement is off by only a factor of two

for the small particles (25 s for VFT, 20 s for MCT, and sD ¼ 11

s). For the VFT fit, fc is near frcp as predicted. For the MCT fit

fc is near the expected glass transition volume fraction of z
0.58. The MCT exponent g is smaller than that found by

Brambilla et al.,21 who found g ¼ 2.5, with the exception of the

small particles for which we find g ¼ 2.6 � 0.9.

Our data gives fragilities on the order of 0.5, consistent with

fragility values from a study of a 2D fluidized granular bed.52

When compared to a molecular system our colloidal system

would be considered a very fragile glass former.
1480 | Soft Matter, 2011, 7, 1472–1482
In the study on the motion of grains in a 2D fluidized granular

bed it was shown that the length scales can also be fitted well to

the models used to fit the time scales where the VFT formula

becomes x4¼ x0
4exp(E/(1�f/fc)) and the MCT formula becomes

x4 ¼ x0
4(1 � f/fc)

d, where d in work by Berthier et al. is predicted

to be 2/3.74,75 The work of Brambilla et al. found that d ¼ 2/3

fitted their light scattering data very well.21

The fits to the length scales are shown in Fig. 14 (c) and (d),

and the fitting values are shown in Table 1. The fitting values

found for the VFT fits are physically feasible where the fragilities

and divergence points compare well to the fitting parameters

previously found for the VFT fits to the time scales. The MCT fits
This journal is ª The Royal Society of Chemistry 2011
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are also reasonable, although our scaling exponents d is only

consistent with the predicted value of 2/3 due to our large error

bars. The MCT divergence at fc is close to fg, as expected.

With the range of volume fractions presented in this paper we

can not conclusively show which model fits better, similar to the

situation which exists for regular glasses.72 Both models capture

and predict the time and length scales associated with dynamic

heterogeneity, and the derived fitting parameters of both

compare well to expected values.
4. Summary

We have used confocal microscopy to study three-dimensional

motion of particles in binary colloidal mixture. The volume

fraction f is varied from 0.4–0.7 and a glass transition, charac-

terized by aging dynamics, is found at f z 0.58. The dynamics of

large and small particles are qualitatively similar. At volume

fractions approaching the glass transition, both show an increase

in motion at the same characteristic cage breaking time scale.

This time scale also corresponds with the time over which the

displacement distribution functions are broadest (most non-

Gaussian). Particle motion is facilitated by the presence of small

neighbors, and inhibited by large neighbors, consistent with the

idea that small particles serve as lubricants. We have investigated

vector and scalar correlation functions and extracted specific

length scales associated with the spatial decay in correlation of

the displacements. This length slightly increases with volume

fraction, although it does not appear to diverge as the glass

transition is approached. The temporal correlations also give rise

to length scales and time scales which grow as the glass transition

is approached, although the form of this growth is ambiguous

with respect to power-law or exponential growth. The spatially

and temporally heterogeneous dynamics are similar to the

observations of molecular glasses.5–9

The presence of particle tracking noise makes certain

measurements more difficult, in particular, the pair correlation

functions (Fig. 2) and the mean square displacement (Fig. 3). The

primary conclusions of our work, however, focus on the particles

that move large distances, and these measurements have

a ‘‘signal’’ (the distance moved) larger than the ‘‘noise’’ (the

instantaneous positional uncertainty). Our measurements of the

non-Gaussian parameter (Fig. 5), spatial correlation functions

(Fig. 8, 9), correlation lengths (Fig. 10), and dynamic suscepti-

bility measurements (Fig. 11–14) are robust to the noise. Like-

wise, the identification of nearest neighbors is fairly robust to

even moderate fluctuations in pair-wise particle separations, and

so we have confidence in our data showing that having fewer

large neighbors enhances a particle’s mobility (Fig. 6).
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