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We study the spatially correlated motions of colloidal particles in a quasi-2D system (human serum
albumin protein molecules at an air-water interface) for different surface viscosities �s. We observe a
transition in the behavior of the correlated motion, from 2D interface dominated at high �s to bulk fluid
dependent at low �s. The correlated motions can be scaled onto a master curve which captures the features
of this transition. This master curve also characterizes the spatial dependence of the flow field of a viscous
interface in response to a force. The scale factors used for the master curve allow for the calculation of the
surface viscosity �s that can be compared to one-particle measurements.
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Diffusion in three dimensions has been well understood
since 1905, when two authors showed that the motion of
particles suspended in a fluid is related to the fluid’s
viscosity [1,2]. This observation has been generalized in
a technique called microrheology, which measures the
thermal motion of tracer particles introduced in a visco-
elastic material. From the motions of the particles, the
material dependent properties can be determined, such as
the elastic modulus, G0�!�, and the viscous modulus,
G00�!� [3]. This has been applied to measure the viscoelas-
ticity of bulk materials such as polymer solutions [4],
biomaterials [5], and hydrogels [6]. A closely related ques-
tion is the motion of tracer particles in a two-dimensional
system such as lipid molecules at an air-water interface [7]
or lipid rafts in cell membranes [8]. For example, in a
purely viscous 2D system, one might imagine that the
diffusive properties are related to the two-dimensional
viscosity, and that by following the motion of tracer parti-
cles one could determine this viscosity. However, in most
cases of practical interest, a strictly two-dimensional sur-
face is an idealization and in reality the surface is adjacent
to three-dimensional fluid reservoirs. For example, recent
experiments study diffusion in biological systems such as
cell membranes [8,9] which are surrounding a 3D cell and
immersed in a 3D fluid. This coupling modifies the behav-
ior of tracer particles and makes interpretation of the
results trickier [10–12].

Furthermore, in many cases in three dimensions, tracers
are known to modify the structure of the medium in their
vicinity, leading to erroneous measurements of rheological
quantities [13]. Another possibility is that preexisting in-
homogeneities such as pores in an otherwise rigid material
can entrain the tracers, resulting in measurements that
underestimate the bulk viscoelasticity of the material in
question [5]. To overcome these difficulties, a new method
known as two-particle microrheology has been established
[13], which looks at the cross-correlated thermal motions
of pairs of particles. The correlated motion of two beads is
driven by long-wavelength modes in the system and is
therefore independent of the local environment of the

tracers. While two-particle microrheology has been ap-
plied to 3D systems [13,14] where the strain field decays
as 1=R, a formalism for 2D interfacial systems coupled to
viscous bulk fluids has not been experimentally determined
to date. This is largely due to the nontrivial nature of the
flow field created by the thermal motion of particles at an
interface. An understanding of this flow field is critical
towards determining the true microrheological behavior of
an interface [7–9].

In this Letter, we look at the correlated motions of
particles embedded at an air-water interface in the presence
of human serum albumin (HSA) protein molecules. This is
done as a function of particle separation R and lag times �,
for correlated motion along the line joining the centers of
particles, Drr�R; ��, and motion perpendicular, D���R; ��.
The interface is purely viscous, with Drr; D�� � �. The
correlations show a transition as a function of the surface
viscosity �s; at high �s their behavior is 2D dominated; at
intermediate �s they show crossover behavior; and at low
�s their behavior is strongly influenced by the 3D fluid
reservoirs (�1=R and 1=R2, respectively). The correlated
motion of the tracer particles for different surface viscos-
ities can be scaled onto a single master curve, which agrees
with theoretical predictions [15]. The surface viscosity �s
determined from the scaling parameters of the master
curve agrees well with�s from one-particle measurements,
demonstrating the homogeneity of HSA at an interface.

We use aqueous solutions of HSA over a narrow range of
bulk concentrations (c � 0:03–0:045 mg=ml) to obtain our
interface. At these bulk concentrations, HSA molecules
diffuse to the air-water interface to form a thin monolayer
of size �3 nm [16], thereby creating a surface shear vis-
cosity. The surface concentration of HSA slowly increases
over time [17], and so the surface shear viscosity �s can be
varied over a wide range. The viscosity of the bulk solution
is negligibly different from the viscosity of water and is
assumed to be � � 1:0 mPa s for all our experiments,
while the viscosity of air is considered to be negligible.
Micron-sized polystyrene beads (Interfacial Dynamics
Corporation, carboxyl-modified, radius a � 0:9 �m) dis-
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persed in an aqueous solution with 20% isopropyl alcohol
are spread at the interface with a syringe needle to act as
tracer particles. The particles are imaged by bright-field
microscopy with a 20� objective, numerical aper-
ture � 0:45, at a spatial resolution of 606 nm=pixel and
a frame rate of 30 Hz. For each sample, short movies of 200
frames are recorded with a CCD camera (Integrated Design
Tools, X-Stream Vision XS-3) that has 1240� 1024 pixel
resolution, with hundreds of particles lying within the field
of view. The positions of the tracers for every frame are
determined by particle tracking. Of potential concern is the
presence of interactions between particles [18], whether
due to electrostatic forces, capillary forces, or other ori-
gins. For all experiments, we measure the pair correlation
function g�R� and find no structure for the separations R
considered in our results. Also, our experiments are con-
ducted in the dilute particle limit, and a control experiment
for one of the surface protein concentrations verifies that
our results are unchanged when the particle concentration
is varied by a factor of 4. This ensures that long-range
particle interactions are not present and do not affect our
conclusions.

From the particle positions, we determine the vector
displacements of the tracers �r��t; �� � r��t� �� �
r��t�, where t is the absolute time and � is the lag time.
Care is taken to eliminate any global drift of the sample
from these vector displacements. We can then calculate the
ensemble-averaged cross-correlated particle motions [13]:

 D���r; �� � h�r
i
��t; ���r

j
��t; ����r� R

ij�t��ii�j;t; (1)

where i; j are particle indices, � and � represent different
coordinates, and Rij is the distance between particles i and
j. In particular, we focus on the diagonal elements of this
tensor product: Drr, which measures the correlated motion
along the line joining the centers of particles, and D��,
which measures the correlated motion perpendicular to this
line (the off-diagonal elements are assumed to be uncorre-
lated, and hence 0). In addition, we also calculate the one-
particle mean squared displacement (MSD), h�r2���i,
from the self-terms (i � j) in the above expression. In
2D interfacial systems coupled to a bulk fluid reservoir,
this one-particle MSD is related to the surface viscosity �s
by a modified Stokes-Einstein relation [10–12]:

 h�r2���i � 4D0s�; (2)

where D0s � Ds�ln�2�s=�a� � �E �O��a=�s�	, with
Ds � kBT=4	�s and �E � 0:577 being Euler’s constant.
This equation, derived by Saffman and Delbrück for
�s=�a
 1 [12], has been modified by Hughes et al.
[19] to work in the limit where �s=�a� 1. Equation (2)
has been used to describe a variety of homogeneous sys-
tems [20], and we use the measured values of h�r2���i to
solve it for the one-particle surface viscosity, �s;1p (refer to
the inset of Fig. 1, for example).

However, as noted above, one-particle measurements
may be inaccurate if the system is heterogeneous, so we

perform two-particle measurements to check this, and also
to further probe the spatial flow field around the particles.
In Fig. 1(a), we showDrr as a function ofR for different lag
times �, for a sample with �s;1p � 340 nPa s m. The mo-
tion of a tracer particle creates a flow field that affects the
motion of other particles. This flow field decays as we
move further out from the particle; hence the correlated
motions decay as a function of particle separation for all
lag times. From the one-particle measurements, we ob-
serve that HSA monolayers at an interface are entirely
viscous at these surface concentrations, and therefore we
also observe that Drr � �. This is illustrated in Fig. 1(a)
where all the Drr are spaced evenly on a log plot for lag
times � � 0:1, 0.2, 0.4, and 0.8 s. A similar linear relation-
ship exists for D��, shown in Fig. 1(b). The linear scaling
of the correlation functions enables the estimation of
�-independent quantities hDrr=�i� and hD��=�i�, which
depend only on R and have units of a diffusion coefficient.

Changing the surface shear viscosity �s has a substantial
effect on both Drr and D��. At high �s [Fig. 2(a)], both
hDrr=�i and hD��=�i are nearly equal and constant over the
length scales 10<R< 150 �m. At these surface viscos-
ities, the behavior can be considered to be 2D dominated,
where the bulk fluid reservoirs have minimal influence. As
�s is decreased [Fig. 2(b)], we see curvature in these
functions and deviation between their values, over the
same range of length scales. At very low �s [Fig. 2(c)],
this deviation is even more pronounced, with hDrr=�i �
1=R and hD��=�i � 1=R2. At these surface viscosities,
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FIG. 1. (a),(b) Two-point correlation functions Drr�R; �� and
D���R; �� for a sample with �s;1p � 340 nPa s m, with lag times
� � 0:1, 0.2, 0.4, and 0.8 s. The evenly spaced correlation
functions imply that Drr;D�� � �. Inset: One-particle MSD for
the sample (diamonds), where the straight line is a fit giving
�s;1p � 340 nPa s m, using Eq. (2).
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bulk fluid effects begin to dominate, although the motion is
still 2D as the protein molecules are confined to an inter-
face. For all surface viscosities, the behavior of the corre-
lation functions is markedly different from what is seen in
bulk 3D systems (where Drr; D�� � 1=R), and is sensi-
tively dependent on �s. Despite the differences in the
behavior of hDrr=�i and hD��=�i at low and high surface
viscosities, all the data can be scaled onto a single master
curve. We define dimensionless correlation functions
�Drr;�� � hDrr;��=�i=2Ds and a reduced separation � �
R=L, where L � �s=�. Both scale factors L and Ds de-
pend only on �s; however, we allow them to vary inde-
pendently to obtain two independent measures of �s (�0s
and �00s , respectively, or in other words, � � R�=�0s and
Ds � kBT=4	�00s ). Figure 3 shows the scaled variables
�Drr, �D�� plotted against the scaled separation �. All the

data sets fall on a single master curve, that spans nearly 4
orders of magnitude. This master curve has the character-
istics of the individual data sets: at small � (�� 1), the
curves are nearly logarithmic, at intermediate � (� � 1),
they show crossover behavior, while at large � (�
 1),
they show behavior that asymptotically approaches 1=R
and 1=R2 for �Drr and �D��, respectively. The solid lines are
fits obtained from theoretical calculations of the response
of an interface to an in-plane point force [10,15], and have

the form

 

�D rr �

�
	
�
H1��� �

2

�2 �
	
2
�Y0��� � Y2���	

�
;

�D�� �

�
	H0��� �

	
�
H1��� �

2

�2 �
	
2
�Y0��� � Y2���	

�
;

(3)

where the H
 are Struve functions and the Y
 are Bessel
functions of the second kind. Up to a scale factor, Eq. (3)
(and therefore the master curve) also characterizes the
spatial dependence of the flow field at an interface in
response to a perturbation. To our knowledge, this is the
first experimental mapping of this flow field over such a
wide range of length scales. The inset of Fig. 3 describes
the scale factors used to create the master curve. For all the
samples, the two independent estimates of the two-particle
viscosity, �0s and �00s , are within 15% of each other; we
therefore plot their average, �s;2p, against the one-particle
viscosity, �s;1p. For most of the samples, the one- and two-
particle measurements agree reasonably well with each
other. However, at the highest viscosity, and therefore the
highest surface concentration of HSA, the two measure-
ments deviate well beyond our experimental error. We
believe this is a consequence of heterogeneity in the sys-
tem; one possibility could be the formation of condensed
phases at the interface at such high surface concentrations
of HSA. While this would explain the underestimation of
the true surface viscosity by the one-particle measurement,
such an assumption deserves further study.

Conventional microrheology uses the one-particle MSD,
h�r2���i to determine G0�!� and G00�!� [3]; these quanti-
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FIG. 3. Master curve of scaled variables �Drr (solid symbols)
and �D�� (open symbols) as a function of reduced particle
separation �. Symbols are same as in Fig. 2, with two additional
data sets [�s;1p � 2:1 nPa s m (stars) and �s;1p � 1275 nPa s m
(triangles)]. Solid lines represent theoretical fits to the data.
Inset: One- and two-particle surface viscosities for the five
samples shown in the master curve. The straight line has a slope
of 1, indicating an equality between the two viscosities.101 102
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FIG. 2. Correlation functions hDrr=�i (solid symbols) and
hD��=�i (open symbols) as a function of particle separation R,
for decreasing surface viscosities �s. The samples are the
following: (a) 2D dominated, �s;1p � 340 nPa s m (diamonds);
(b) crossover, �s;1p � 72 nPa s m (circles); (c) 3D dependent,
�s;1p � 21:3 nPa s m (squares).
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ties are directly compared to bulk rheological measure-
ments. Since the one-particle measurements are inherently
local in nature, a more accurate approach is to determine
the two-particle MSD [13], h�r2���iD. Analogous to [13],
we calculate this quantity for our 2D viscous systems by
extrapolating the long-wavelength fluctuations of the me-
dium to the bead size, which gives

 h�r2���iD � 2
�
Drr�R; ��

�Drr���

�
R
�ln�2�s=�a� � �E

�O��a=�s�	: (4)

This expression can readily be generalized for viscoelastic
interfaces, i.e., with a nonzero G0�!�; however, such mea-
surements are beyond the scope of this study. In practice,
we confirm that Drr�R; ��= �D��� is nearly constant over the
length scales studied, 9<R< 100 �m, shown in the inset
of Fig. 4 for a specific lag time (� � 0:53 s). The averaged
quantity hDrr�R; ��= �D���iR is then calculated for all lag
times to obtain h�r2���iD. From Fig. 4, we see that for all
the samples, h�r2���iD is purely diffusive, as expected for
a viscous system. At short lag times, the turnover in the
one-particle MSDs, caused by resolution-limited noise, is
significantly reduced in the two-particle MSDs. Finally, at
long lag times, h�r2���iD is equal to h�r2���i within
experimental error, except for the highest viscosity (as
expected, since �s;1p deviates from �s;2p for this sample).
These observations provide conclusive evidence of the
accuracy of two-particle measurements over local probes
of the rheology.

The verification of two-point microrheological tech-
niques for a quasi-2D systems has applications for the
study of inhomogeneous materials at an interface. Any
significant variation between h�r2���iD and h�r2���i in-
dicates the presence of heterogeneities, and the estimation
of rheological quantities from the motion of tracer particles

can be modified to reflect this. Future work will involve
studying lipid molecules at an interface under compression
or expansion, which creates domains such as liquid ex-
panded or liquid condensed phases. We expect that our
two-particle measurements will provide accurate measure-
ments of the surface viscosity even with the presence of
these heterogeneities. Other possible areas of future re-
search are biological interfaces such as cell membranes,
with the diffusing entities being protein aggregates or lipid
rafts. However, two-particle microrheology can only probe
heterogeneities of the order of the bead size and above,
which may not always be applicable for lipid systems with
molecules in the nanometer scale. It should also be pointed
out that for cases where �s is very small, the correlation
functions (D��, in particular) die out rapidly, making an
estimation of �s;2p from the two-particle measurements
difficult. However, one-particle microrheology is equally
inaccurate in this limit, as the bulk viscosity will dominate
over surface effects, making such measurements challeng-
ing. Nonetheless, it would be extremely interesting to test
the limits of the scaling behavior in this regime.
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