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Properties of Cage Rearrangements Observed near the Colloidal Glass Transition
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We use confocal microscopy to study particle motion in colloidal systems. Near the glass transition,
motion is inhibited, as particles spend time trapped in transient “cages’ formed by neighboring particles.
We measure the cage sizes and lifetimes, which, respectively, shrink and grow as the glass transition
approaches. Cage rearrangements are more prevalent in regions with lower concentrations and higher
disorder. Neighboring rearranging particles typically move in parallel directions, although a nontrivial
fraction moves in antiparallel directions, usually from particle pairs with initial separations corresponding
to local maxima and minima of the pair correlation function g(r), respectively.

DOI: 10.1103/PhysRevLett.89.095704

Many liquids undergo a glass transition when rapidly
cooled, where their viscosity grows by orders of magnitude
for only modest decreases in temperature. This drastic
increase in viscosity is unaccompanied by significant struc-
tural changes; instead, the dynamics slow dramatically.
Physically, this slowing of the dynamics reflects the
confinement of any given particle by a “cage” formed by
its neighbors; it is the rearrangement of the cage which
leads to the final structural relaxation, allowing the parti-
cle to diffuse through the sample [1]. The dynamics of
cages have been studied with scattering measurements,
which probe a spatial and temporal average of their behav-
ior, and with computer simulations; however, in real
systems, the actual motion of the individual particles in-
volved in cage dynamics and breakup are still poorly
understood [1-9].

In this paper, we study the motion of the individual
particles and their neighbors during cage breakup, and
provide the first direct experimental visualization of this
process. We use confocal microscopy to study the motion
of colloidal particles in a dense suspension, an excellent
model for the glass transition [10-12]. The rearrangement
of cages involves the cooperative motion of neighboring
particles [2-7], for example, as shown in Fig. 1, where the
most mobile particles have arrows indicating the direction
of their motion. While most neighboring particles move in
similar directions, a significant minority move in opposite
directions, resulting in local changes in topology. We also
find that the more mobile particles are located in regions
with a lower local volume fraction, and higher disorder.
These measurements provide a direct, quantitative physical
picture of the nature of cage rearrangements.

We use sterically stabilized poly-(methylmethacrylate)
particles with a radius @ = 1.18 um [3,10,13], immersed
in a mixture of decalin and cycloheptylbromide. This
solvent simultaneously matches the particle index of re-
fraction and density to mitigate the effects of scattering and
sedimentation. Hard sphere particles undergo a freezing
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transition at a volume fraction ¢, = 0.494, a melting
transition at ¢,, = 0.545, and have a glass transition at
¢, = 0.58. [10,12]. To visualize the particles, we stain
them with fluorescent rhodamine dye; this imparts a slight
charge to the particles, shifting the phase transition
boundaries to ¢, =~ 0.38, ¢, = 0.42, and ¢, =~ 0.58.
We image a volume 60 wm X 60 um X 10 xm, contain-
ing several thousand particles, and identify particle centers
with an accuracy of at least 0.05 um [13]. A typical
particle trajectory is shown in the inset of Fig. 1; it exhibits
caged motion, with a sudden cage rearrangement which
lasts ~600 s.

The effect of cages on the ensemble dynamics [1-9,12]
is evident from the particle mean square displacement,
(Ax?), shown in Fig. 2(a) for three supercooled colloidal
fluids (¢ < ¢,). At the earliest times, particle motion is
diffusive, as they have not moved far enough to encounter
the cage formed by their neighbors. As their displacement

FIG. 1 (color). A cut through a three-dimensional sample, with
arrows indicating the direction of motion for particles with
displacements Ar > 0.2 um, using At* = 600 s. The sample
has ¢ = 0.52, and the cut is 2.5 um thick (~ 1 layer of
particles). The arrows are all the same length in three dimen-
sions, so shortened arrows indicate motion in or out of the
picture. Lighter colors indicate particles with larger displace-
ments. Inset: 120 min trajectory of one particle from this sample.
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FIG. 2. (a) Mean square displacements. The diagonal straight
lines indicate estimates for (Ax2) ~ 2D At. Vertical bars indi-
cate Ar*. (Ax?) is shown rather than (Ar?) as the poorer z
resolution artificially increases (Ar?). (b) Non-Gaussian parame-
ter a,(Atf). (c) The cage correlation function.

becomes larger, their motion is impeded by the cage,
leading to the plateau in (Ax?). The displacement at the
plateau decreases as ¢ increases, reflecting the smaller
cage size. Moreover, the cages become more long-lived
with increasing ¢, presumably because cage rearrange-
ments involve a larger number of particles as the glass
transition is approached [2-7]. Cage rearrangement leads
to an upturn in (Ax?) at the end of the plateau; at even
longer lag times, the motion again becomes diffusive,
albeit with a greatly decreased diffusion coefficient, D,
as indicated by the dashed lines in Fig. 2(a).

We estimate the cage rearrangement time scale, Ar*, by
finding the maximum of the non-Gaussian parameter
a,(At) = (Ax*)/(3(Ax*)?) — 1, shown in Fig. 2(b). a, is
computed from the 1D displacement distribution
P(Ax; At) [3-6], and is zero for a Gaussian distribution,
and largest when there are broad tails. To compare these
distributions for different ¢, we normalize the displace-
ments Ar by the average, 7 = (Ar2)'/2. The radial step-
size distribution P(Ar/F; Ar*) is plotted for three values of
¢ in Fig. 3(a). There are more large displacements than
expected for a Gaussian distribution, shown by the dashed
line, reflecting the anomalously large motion of the par-
ticles undergoing cage rearrangements.

These large displacements contribute to the increase in
the mean square displacement at lag times greater than A¢*.
To confirm that this motion directly reflects structural
relaxation, we calculate a topological cage correlation
function, Cg,ee(Af) [8]. We define particles as nearest
neighbors if their separation is less than a cutoff distance
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FIG. 3. (a) Step-size distribution. The vertical dashed line
indicates the 8% cutoff. The dotted line is a Gaussian with width
7 = 1. (b) Ceuee(Ar"; Ar). (c) Average subsequent displacement
(x'y along the direction of the original displacement Ar. The
dashed line is a linear fit to the small Ar region for ¢ = 0.56
(circles). (d) The average number of ordered neighbors N,
particles have. The symbols are: triangles ¢ = 0.46, Ar* =
300 s, 7=0.61 um; squares ¢ =0.52, Ar*=600s, 7=
0.22 pm; circles ¢ = 0.56, Ar* = 1000 s, 7 = 0.16 um.

set by the first minimum of g(r); C yge (A?) is the fraction of
particles with the same neighbors at time ¢ and time ¢ + Az,
averaged over all ¢. As shown in Fig. 2(c), for the lowest
volume fraction, ¢ = 0.46 (triangles), particles are barely
caged, but as ¢ increases toward ¢,, the decay of C,ge
slows dramatically. To determine which particles are re-
sponsible for topological changes, we replot C,e(Af*) as
a function of the normalized displacement; in this case
the average is over all particles with a given normalized
displacement. As shown in Fig. 3(b), C,,e.(Af") decreases
significantly for particles with larger displacements,
confirming that these contribute most to the structural
relaxation.

To directly measure the cage size, we investigate the
temporal correlations of the motion of individual particles
[9]. Caged particles must have no significant net displace-
ment over long times; by contrast particles whose cages
rearrange do have net displacements. To quantify this, we
compare a particle’s displacements A7 and A7 during
sequential time intervals of Ar*. We focus on x/, the
component of A7’ along the direction of the original dis-
placement AF; (x) is plotted in Fig. 3(c). (x') is always less
than zero, indicating that the average motion is anticorre-
lated. For small initial displacements the behavior is linear,
x' = —c|(AF)|. Cages constrain particles so that the farther
a particle moves, the farther it moves back: large values of
¢ indicate highly anticorrelated motion, with ¢ having a
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maximum possible value of 1/2 for a cage with perfectly
rigid walls [9]. The linear relationship fails for larger
displacements, as seen in Fig. 3(c); particles move shorter
distances (x’) than expected by extrapolation from the
small A7 behavior. We identify the end of the linear regime
as the cage size, rgg [9]. For comparison, we estimate
the size of the cage by other methods. The simplest is the
free volume of the system compared to random close
packing, rie. = 4al(¢,.,/ )3 — 1]. Another estimate
comes from the mean square displacement at the cage
rearrangement time scale Ar*, rpg = (Ar2(Ar*))/2. The
final estimate is Ar*(Ar*), chosen so that 5% of particles
have displacements Ar > Ar* [3,6]. The estimated values
are listed in Table I and are in good agreement. The cage
size decreases as ¢, is approached [9,14], accounting for
the increase in Ccage(At*) seen in Fig. 2(c): particles under-
going cage rearrangements move shorter distances, and
thus their topology changes less.

We can use this cage size to model the particle motion as
a random walk, alternating between steps (cage rearrange-
ments) and pauses (caging). Each individual step is not
random, but is due to the motion of a particle of a distance
~Tcage- From the central limit theorem, Do, = rgyge/2A1,
where Ar** is the mean time between steps, or the average
cage lifetime [15]. The estimated values of D, and the
values calculated for Ar** are listed in Table I. We find that
Ar™ is significantly larger than Ar*, the time scale for a
particle to move during one cage rearrangement. Both
grow as ¢ increases, consistent with previous experiments
[1,11,12] and simulations [4-9,14]. While the cage size
decreases, it remains finite as ¢, is approached, implying
that the dramatic decrease in D, is due primarily to the
increasing cage lifetime. The a-relaxation time scales with
At*™; 1, is the time scale for which all of the particles have
diffused roughly the interparticle spacing, thus 7, /Af* =
(2a/ rmge)2 [1]. Our random-walk picture also yields an
unambiguous estimate of the fraction of particles involved
in cage rearrangements at any given time; it is given by the
ratio Ar*/Ar*. This ratio is ~8% for all samples except
the most dilute (for which it is 16%); it is shown by the
vertical dashed line in Fig. 3(a).

Several computer simulations looked for the underlying
origins of cage rearrangements, and found correlations
between mobile particles and their local environments
[6,7,16,17]. Mobile particles tended to be in regions with

TABLE 1.

higher disorder [7,16,17], lower density [7,17], and higher
potential energy (and thus higher disorder) [6]. Ultimately,
our samples crystallize, and it is possible that the evolution
to crystalline order drives the structural relaxation. To
investigate this possibility, we quantify the local order
with an order parameter that identifies local crystalline
regions [18]. If two adjacent particles have similar orien-
tations of their neighbors the two particles are ordered
neighbors; most particles have between two and four or-
dered neighbors. Particles with larger displacements have
fewer ordered neighbors, as shown in Fig. 3(d), in agree-
ment with the correlation between mobility and disorder
seen in simulations [6,7,16,17]. Furthermore, the mobile
colloidal particles typically move to positions where their
number of ordered neighbors has increased by ~1, sug-
gesting a slow evolution toward crystalline structure. Thus,
any effect of the local crystal order on the cage rearrange-
ment may be driven more by local variations in ¢, rather
than an evolution to the state with the lowest global energy
minimum [18]. In fact, we find that the volumes of the
Voronoi polyhedra associated with the mobile particles are
larger on average, giving a local volume fraction as much
as 8¢ = 0(0.03) lower than the mean. This suggests that
the particles with smaller ¢ are farther from ¢, and thus
are more likely to rearrange, in agreement with the simu-
lations [6,7,17]. The Voronoi volume varies from particle
to particle; the correlation between mobility and local
volume is only an average tendency.

Cage rearrangement is not strictly a localized event;
instead, many neighboring particles are typically involved,
often moving in similar directions, as shown by Fig. 1 [2—
7]. To quantify the propensity for motion of neighboring
particles in the same direction, we calculate the distribu-
tion of angles, P(6), between the displacement vectors of
all neighboring particles, measured at Ar* to define the
displacements. The probability of observing two displace-
ment vectors forming an angle in the range (6, 6 +
do; ¢, ¢ +dp) is given by P(6, ¢)sinfdhdg; in
Fig. 4(a) we plot P(6, ¢) which, by symmetry, depends
only on 6. This function is strongly peaked at 6 = 0,
indicating that two particles usually move in parallel di-
rections, sometimes termed ‘‘strings,” but also including
three-dimensional groups of particles moving in parallel
directions [3,5-7]. However, a significant fraction of par-
ticles move in antiparallel directions (6 = ), which we

Estimates for the cage size, the cage rearrangement time scale Az, the cage lifetime

Ar™, and the estimated asymptotic diffusion coefficient D.

Cage size (um)

Time scales (hr)

d) Tcage Tfree T'msd Art Art Ar Dy, (/J“mz/s)
0.46 0.75 0.55 0.63 1.12 0.083 0.52 15-107°
0.52 0.35 0.35 0.23 0.40 0.17 2.1 0.80- 107
0.53 0.45 0.31 0.27 0.49 0.67 94 0.30- 107
0.56 0.25 0.21 0.17 0.29 0.28 33 0.26 - 1073
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FIG. 4. (a) Probability distribution of angle between displace-
ment vectors for two neighboring particles, as a function of the
polar angle 6. (b) Pair correlation function g(R,) (solid line) and
width ogy, of probability distribution function P(AR;,|R;;)
(dashed line). The inset shows P(AR,|R,,) for nearest neigh-
bors, with initial separations of 2.4 um < Rj, <2.6 um (solid
line), and antineighbors with 3.0 um < Rj, < 3.2 um (dashed
line). All data are for ¢ = 0.56 and Ar* = 1000 s.

term ‘“‘mixing regions.” When 6 = 7, particles are either
converging or diverging; examples of each case can be seen
in Fig. 1. We find that these “mixing” pairs of particles
(6 > 7/2) are approximately twice as likely to result in the
two particles no longer being neighbors (compared to the
pairs with with 6 < 77/2). Thus, these rearrangements,
while less frequent, are responsible for much of the topo-
logical changes.

To investigate the nature of the correlated motion of
neighboring particles, we calculate the probability distri-
bution function, P(AR,|R},), which measures the change
in separation, AR ,, between two nearby particles, initially
separated by R, after a time interval Ar*. These distribu-
tions are narrower if R, corresponds to a peak of the pair
correlation function, g(R,), than if R;, corresponds to a
minimum, as shown by the solid and dashed lines in the
inset of Fig. 4(b), respectively. This is shown more dra-
matically in Fig. 4(b), where we compare the widths of the
distribution functions, o ,, directly with g(R;,), showing
that they are anticorrelated. This is reminiscent of the
behavior of the collective diffusion coefficient, which
varies as the inverse of the static structure factor, D(q) ~
1/8(q) [19]. The relaxation of fluctuations at the peak of
the structure factor, which reflects the most favorable
structure, is slowed relative to other values of ¢. Our results
show a similar behavior occurs in real space; particles
whose separation corresponds to a peak in g(R;,) are in
more favorable relative positions and tend to move to-
gether, so that their separation does not change; by con-
trast, particles whose separation corresponds to minima of
g(Ry,) are in less favorable relative positions, and tend to
move in antiparallel directions.

095704-4

This work reveals a physical picture of cage trapping
and rearrangement. Cage rearrangements involve localized
clusters of particles with large displacements, in regions
with higher disorder and higher free volume. Both the
collective nature of the relaxation, and the local origin of
the cage rearrangements, clearly play a key role in the
behavior of supercooled fluids of colloidal suspensions; it
remains to be seen whether they also are important effects
in other glasses.
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