Supplement B:

“Classification of Critical Phenomena having a Parameter-
Dependent Renormalization ”
S. Boettcher and C. T. Brunson

Ising Hamiltonian for Hanoi Network HN5:
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Figure (a) displays the network HNS (here, with N=33 nodes). The Ising Hamiltonian on this network is

-ﬂj‘[ = Ko(X0X1+X1X2+...+XN,1XN) +
Kl[(X1X3+X5X7+...+XN,3XN,1)+(X2X6+X10X14+...+XN,6XN,2)+...+(XN/4X3 N/4)] +
+ H(xo+...+xy)

with raw couplings Ky = K; = 3J, L = Lo = Ly = yf3J, and field H = 3h. The parameter ye/0,1] allows to define the
strength of long-range couplings (marked green in the equation and figure (a)) relative to those in the 1d-backbone of
the network, L = yK,.
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In[1]:=

A single renormalization group (RG) step consists of tracing out every 2nd spin, and we regroup the Hamiltonian into
those terms containing all odd-index spins and the rest:

-ﬁ.’]‘[: Zn(_ﬁj_[;l) + R(XO X2, XN 2 7xN)

with the “sectional” Hamiltonians -8, for n=2(2j-1), running over all sections j=1,2,...,N/4. The top of figure (b)
shows the spins and their couplings in each such section of the network. The RG-step consists of tracing out the odd-
index spins, X, ; and .1, in each section. We define “activities” p=exp{-23J} and n=exp{-Bh} and parametrize
the renormalizable couplings in terms “raw” activites Ag = 0, A; = %, Ay = 2Y, A3 =1, Ay = 1, and A5 = 1,
where A, becomes the renormalized energy scale, A; = exp {-2 Ky} and A, = exp {-2 L} are the renormalized
backbone and long-range couplings, A3 = exp {-Hg} and A, = exp {-Hp} are the renormalized site- and bond-
magnetizations (initially, Hs = Hand Hy = 0) , and As is the renormalized 3-point magnetization which arises in this
RG when the up/down symmetry is broken by the external field. With A;representing the coupling strength along the
backbone of HNS, its behavior resembles most closely that of x in our theory.
Then, we can write the sectional Hamiltonian as Zo= exp{ -8, } before the RG-step at any point during the RG
recursion as
Zo[x0_, x1_, x2_, x3_, x4_] := Exp[-A¢g] *

A; " (- (x0%*x1 +x1 *x2+x2%x3+x3%*x4) /4) »u” (- (x1*xx3)/2)*

By” (- (X0 % X2 + x2 % x4) / 4) *u” (-y (X0 % x4) / 2) *

A3” (- ((%0 +x1) + (x1+x2) + (%2 +%x3) + (x3 +x4)) /4) *

B (- ((%0 +x2) + (x2+%x4)) / 4)

As”™ (- (%0 % x1 * x2 + X2 * x3 *x4) / 2)

Notice the explicit dependence on the raw activity u originating with the long-range couplings K; that do not get
renormalized, see Figure (b) above.

Obtaining the RG-flow:

In[2]:=

In[3]:=

The RG-step consists of tracing out the odd-index spins in Z, from before the RG-step, and express the result in a
function Z; after the RG-step that is identical in shape (see bottom of figure (b)), i.e.,
Z;[x0_, x2_, x4_] := Exp[-Bo/ 2] *
B; " (- (%0 %*x2 +x2%xx4) /4) %
B, (- (X0 * x4) / 4) *
B3” (- ((x0 +x2) + (x2 +x4)) /4) *
By " (- (x0 + x4) / 4) *
Bs”™ (- (X0 » x2 % x4) / 2)
where the B; are the newly renormalized activities. To this end, we require Z; [Xn_2, Xn, Xni2]= Zx, ,Zx,,

ZO[Xn—ZI Xn-17 Xnr Xn:+lvs Xn+2]:
TrZo[x0_, x2_, x4_] := Sum[Sum[Z,[x0, x1, x2, x3, x4], {x1, -1, 1, 2}], {x3, -1, 1, 2}]

Hence, both sides have to be equal for all combinations of x, 2, Xpn, Xp.2 = + / -1,



In[4]:=

Out[6]=

out[7}=

out[8]=

out[9]=

Out[10]=

Out[11]=

out[12]=

out[13]=

i=0;
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For[x, o, =-1, x5, <1, X, 2 +=2, For[x, =-1, x, <1, x, += 2, For[xy,2 = -1, X3,2 <1, Xp,2 += 2,

leq[i] = Z1[Xn-2/ Xn, Xn:2];

req[i++] = Factor[TrZo[X,.2, Xn, Xn.2]1];

111
leq[0] == req[0]
leq[1] = req[1]
leq[2] = req[2]
leq[3] = req[3]
leq[4] = req[4]
leq[5] = req[5]
leq[6] == req[6]
leq[7] = req[7]

B, L
e 2 B3/ By VBs e oy

A, (A} +2uB; A3 A5 + A3 AZ)

VB, B} A VA, As
- BY/4+/B; e u’é%m (1AL A3+ Ap As + A Ag + 1 A3 AZ)
VEs Var A as
@’570\/;\/; e o u%’%\/z (A§+2uA3 A5+A§)
BY/*/Bs - Az As
e Bl/4/Bs e u%% (1 A3+ Bs + Ay A A + (1 Ay A3 AZ)
Ol VA B3 A s
e s BY/4+/B;, e u—;%@ (LA A; + Ay Ag + A2 Ag + 1 A5 AZ)
VEs Var A as
e*?mm e u%%\/ﬁ (A2 +2 A5 As + AZ)
Bl B, A; A
@7 Bl/4+/Bs e u’é*% (1 A3+ Bs + Ay A As + (1 Ay A3 AZ)
VB B Va, a}?2+/a, as
e s e ;[zi’g (1+2un; A3 As + A7 A3 AZ)

\/B; BY*B3;+/Bs, VBs A; VA, A2 Ay As

|3

Due to the remaining symmetries, not all of these relations are independent. In fact, since there are 6 renormalizable
couplings, there are also six independent relations. (To simplify the task for Mathematica, it is advisable to eliminate

unnecessary dependences before solving!)
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in[14= SB[0] = Expand[Solve[Log[leq[0] * leq[1l] * leq[2] * leq[3] * leq[4] * leq[5] * leq[6] * leq[7]] ==
Log[Simplify[req[0] * req[1l] * req[2] * req[3] * req[4] *
req[5] » req[6]  req[7] * Exp[8 « Ao]]] - 8 x Ay, Bo]]1[[1]]
SB[1] = PowerExpand[Simplify[Solve[Factor|[ (leq[2] * leq[5]) / (leq[0] * leq[7])] ==
Factor[ (req[2] * req[5]) / (req[0] *req[7])], B11][[2]]]
SB[2] = PowerExpand[Simplify[Solve[Factor[ (leq[1l] "2 * leq[3] " 2) /
(leq[2] * 1eq[5] * 1eq[0] * 1leq[7])] ==
Factor[ (req[1] ~2 + req[3] “2) / (req[2]  req[5] * req[0] * req[7])], B2]11[[2]]]
SB[3] = PowerExpand[Simplify[Solve[Factor[ (leq[1] "2 » leq[O] * leq[5]) /
(leq[3] "2 % 1leq[7] * leq[2])] ==
Factor[ ((req[1] “2 * req[0] » req[5]) / (req[3] "2 * req[7] *» req[2]))], B3]11[[4]]]
SB[4] = PowerExpand[Simplify[Solve[Factor[(leq[3] "2 * leq[2] *3 » 1leq[0]) /
(leq[5] "3 * leq[1l] "2 x 1leq[7])] ==
Factor|[ (req[3] "2 *xreq[2] "3 »req[0]) / (req[5] "3 *xreq[l] "2 xreq[7])], Ba]11[[4]1]]
SB[5] = PowerExpand[Simplify[Solve[Factor[(leq[3] "2 * leq[0] *» leq[5]) /
(leq[1l] "2 *x leq[7] * leq[2])] ==
Factor[ (req[3] ~2 » req[0] * req[5]) / (req[1] “2 + req[7] * req[2])], Bs]]1[[4]]]

RGp,o = Table[Part[SB[n], 1], {n, O, 5}];

1
Out14]= {Bo - Log[u] +Log[A;] + 2Log[A;] + 2Log[As] - — Log[A3 + 2 Az As + AZ] -
2

1 1
—Log[Al +2 A A3 As + A} AZ] - — Log[1l+2uA; AsAs + A} A AZ] -

4 4

1 1 ) ,
;Log[Al (B3 +As) +A3As (A3 + As)] - ELog[A5+A1A3A5+A3 (k+un;al)| +2A0}

outis= {B1 > (A1 By (AJ+2uR;As+AZ)) /
(\/(A§A§+A§A§A§+2uA1A3A5 (1 +A§A§) +2 A3 AsAs (1 +A§A§) +A2 (1+4u2A§A§+A§Aé)))}

Out[16]= {Bz - (uzy (Ap (UA3+As) +A3As (A3 +[UAs)) (As +A; A} As + Aj (u+uA1A§)))/

((A§+2/,(A3A5+A§) \/A§+2uA1A3A5+A§A§ \/1+2uA1A3A5+A§A§A§ )}

outf17]= {B3 N (A3A4 (A% +2 A Ay As + 22 A2) 7" \/A1 (LA +Bs) + Az As (As + i As) )/

>1/4

((1+2uA1A3A5+A§A§A§ JA5+A1A§A5+A3 (1 +pngAZ) )}

1/4
out[18]= {B4e ((A§+2uA1A3A5+A§A§) / JA5+A1A§A5+A3 (1 +pny B2 )/

1/4
((1+2uA1A3A5+A§A§A§> /AL (4A3 + Bs) + A3 As (B + uAs) )}

1/4
Out[19]= {B_r,% ((A§+2uA1A3A5+A§A§> / JA5+A1A§A5+A3 (u+uA1A§) )/

1/4
((1+2uA1A3A5+A§A§A§> \/Al (LA3 +As) + Az As (A + 1 As) )}

These are the RG-flow equations. Again, notice the dependence on the temperature 8 through the explicit occurance
of .
As mentioned above, the RG-flow is initiated through the raw couplings via

in21]= SIC = {Bp»0, B »u~2,B,»>u"~(2y), B3 »>n,B;>1, Bs » 1}

outj21]= {Bo >0, B, >u%, By>u?Y, B3 >n, By>1, Bsg > 1}

Fixed Points at h=0:

First, we consider the case h=0 (77=1), in which case the RG-flow for the activities A3, A4, and A5 become trivial:
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in22):= RGpo = FullSimplify[RGy,0 /.- n—>1/.A3>1/.A;>1/.RAs>1,

Assumptions » u > 0&&y > 0&&A; > 0&&A; > 0]

1 1
out[22]= {Bo - Log[u] + Log[A;] + —Log[ } + 2 A,
2 2 (L+u)? (1+A1)2 (1+2uA; +A2)
2 (1+p) Ay A pPY (L+p) (L+A)°
B]_% ,Bz% ,B3%1,B4%1,B5%1}
1+2uA1+A§ 2(1+2uA1+A%)

The recursions for A; and A, correspond to those for k and A in Eq. (19) of Ref. [Boettcher&Brunson, 2011]. W

obtain the fixed points by equating B; = A; in the RG-flow:

in23)= FP = FullSimplify[Solve[ ({By, B2} /. RGyo) == {A;, Ry}, {A;, A;}], Assumptions » u > 0&&y > 0]

1 1

oves- {{B1 50, B> — Y (1) |, {Brs - (uy+u (-24u¥) -4 au (Lop) v (-2ue ¥ (L+p)? |,
2 2

1

Azezuy (2+MY+LI (-2 +u¥) —¢—4+4u2+uzy (1+u)2-4ap¥ (—1+u2> )},
1

{Alﬁf (Uyﬂl (-2 +uY) +\/f4+4uy (Lap) + (2p+u¥ (L+p))? ),
2
1

Ay, 5> — 1Y (2+uy+u (=2 +puY) +\/—4+4u2+u2y (L+)2 -4y (—1+u2) )},
4
1

{Alef (—2/,{—;13’ (1+ ) —\/—4+4u2+u2y (1+u)2+4uy(—l+u2) ),
2
1

A, > — Y (—2+uy+u (2 + 1Y) +¢—4+4u2+uzy (1+u)2+4yy (—1+M2> )},
4
1

{Alef (72;47;15’ (l+u>+\/f4+4u2+u2y (1+)2+aud (-1+42) ),
2
1

A, 5> — 1Y (—2+uy+u (2 + 1Y) —\/—4+4u2+u2y (L+)2+4Y (—1+u2) )}}
4

|5

(S

A plot of the FP for the backbone activity A; ( = x) as a function of u for various values of y exhibits exactly the

same behavior as our model, see Fig. 1(b-d) for comparison:
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In[24]:= Show[
Plot[u, {u, 0, 1}, PlotStyle » Green],

Plot[—l +4/2-2pu, {4, 0, 1}, PlotsStyle - {Dashed}] ,

Plot[{Al /. (FP/.y—>.1),A /. (FP/.y- .4), A, /. (FP/.y~>1)}, {u, 0, 1},
PlotStyle » Thick, ColorFunction - Function[{a, b}, If[b < -1+ m, Red, Black] ] ,
ColorFunctionScaling - False]

, PlotRange -» {{0, 1}, {-0.2, 1}}, AxesLabel -» {"u", "x"}]

K
10 -

Out[24]= L

“

T \ 0.4\ S 0.(( 08 1.0
-02 S

Notice that we have included in the plot (as a dashed line) the function for the location of the branch-point,

A; (ug) =xp (Ug) = -1+4/2-2pup , which results from the vanishing of the discriminant in the FP of A;. To

this end, we define a general procedure which evaluates any input quantity as a function of uz ...

In25:= OnMuB[exp ] := Block[{res, Defz, Solz, z, ¥, t},
Defz = Collect[(-4+4u¥ (L+u) + (-2p+p¥ (L+p))?) /. 4% (L+p) >z, 2];
Solz = Simplify[Solve[Defz == 0, z]][[2]];
res = Factor[Simplify[exp /. y > Log[z/ (1 +u)] /Log[u], Assumptions » z > 0&&u > 0]];
res = FullSimplify[res /. Solz, Assumptions » u < 1&&u > 0];

res = FullSimplify[res /. u > 1-t"2, Assumptions » t > 0] ;
res = FullSimplify[res /. T » ¥ + SqQrt[2], Assumptions » ¥ > 0] ;
res = FullSimplify[res /. ¥ » Sqrt[1l - u] - Sqrt[2], Assumptions -» u > 0];

Return[res /. u -» ugl;

]

...and use it to determine xz (up) from the upper branch of fixed points (FP), A; = x, (1) - xg (ug) for u - ug:

Inf26l= OnMuB[A; /. FP[[3]1]]

outeel= -1 ++/2 -2 ug

Now we evaluate the eigenvalues A as in Eq. (7) from the Jakobian defined in Eq. (3) at h=0:

In[27]:= MatrixForm[
(R')ho = Table[FullSimplify[D[((Bi /. RGnyo) /- N —>1/.RA3>1/.RA;>1/.Rs>1), A;],
Assumptions » u > 0&&y > 0&&A; > 0&&A; > 0], {j, 1, 2}, {i, 1, 2}]]
Out[27]//MatrixForm=

2 (1+p) (—1+A§) A, u2y (—1+;4Z) (71+A§)

(1+2 pn,+n3)° (1+2 uny+a2)?

2 (1+u) Ay 0
1+2 A1+Af



In[28]:=

Out[29]=

In[32]:=

out[33]=
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with eigenvalues (very long outputs have been suppressed!)

EVyo = Eigenvalues [ (’R') ho] ;

Ao = Simplify[ (EVyo /. FP[[1]]), Assumptions » u > 0&&y > O]

A, = Simplify[ (EVyo /. FP[[2]]), Assumptions » u > 0&&y > 0] ;

A_ = Simplify[(EVyo /. FP[[3]]), Assumptions » u > 0&&y > 0] ;

{u?¥ (1+m)?, o}

From those relations, we can reproduce the eigenvalue-plot in Fig. 2(b) for a branch point in the physical regime,
xp (KB) > O:

Ev = {2, Ay, A} /.y > 0.1;
Show [
Plot[1l, {u, O, 1}, PlotStyle -» Dashed],
Plot[Ev, {u, 0, 1}, PlotStyle - Thick,
ColorFunction » Function[{a, b}, If[b > 1, Red, Black]], ColorFunctionScaling -» False],
PlotRange -» {{0, 1}, {-0.3, 1.15}}, AxesLabel » {"u", "A"}]

...or the corresponding plot at the critical value of y. = 1log, (3 /2) whenxg (up) = 0:
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n34= BV = {Xo, A4y A} /. ¥y > Log[3 /2] /Log[2];
Show [
Plot[1l, {u, O, 1}, PlotStyle -» Dashed],
Plot[Ev, {u, 0, 1}, PlotStyle - Thick,
ColorFunction » Function[{a, b}, If[b > 1, Red, Black]], ColorFunctionScaling -» False],
PlotRange » {{0, 1}, {-0.2, 1.15}}, AxesLabel » {"u", "A"}]

Out[35]=

-0.2

...or for y=1 (somewhat enlarged) when the branch point is below the physical regime, xg (ug) < 0, and A, , A_
have switched order:

nz6l= Ev = {Ag, Ayy A} /oYy > 1;
Show [
Plot[1l, {u, 0.61, 0.63}, PlotRange -» {{0.61, 0.628}, {.8, 1.05}}, PlotStyle -» Dashed],
Plot[Ev, {u, 0.61, 0.63}, PlotRange » {{0.61, 0.628}, {.8, 1.05}}, PlotStyle - Thick,
ColorFunction » Function[{a, b}, If[b > 1, Red, Black]], ColorFunctionScaling -» False],
AxesLabel -» {"u", "A"}]

out[37]=

Fixed Points at h>0:

Inducing a magnetization for a small external field h—0 breaks the up/down (Z;)-symmetry and requires three new
parameters, the activities A3, A4, and Ag above, to be renormalized, and we arrive at the extended RG-flow, RGy,
above. For any h>0, the RG-flow evolves to the stable strong-field fixed point with A3 = 0; the behavior for small
external field h—0 is governed by the unstable fixed point A; = A4 = As = 1 (leaving A;, A, unevaluated for now),
where we obtain the extended Jakobian matrix
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In[38]:= Mat—.rix:-*orm[(R')lH0 = Table[FullSimplify[D[((Bi /. RGny0)), Aj] /- A3 >1/. Ay >1/. A5 1,
Assumptions » u > 0&&y > 0&&A; > 0&&A; > 0], {j, 1, 5}, {i, 1, 5}]]

Out[38]//MatrixForm=
2 (1+p) (-1+8%) By p?¥ (71+u2) (71+A§>

- 3 3 0 0
<l+2uA1+A§) (1+2uA1+A§>
2 (1+p) Ay 0 0 0
1+2 (1 Ay +A2
1 1 2 1+u A -1+ -1+A;)3
0 0 L + + AL . _ ( 1) ( 1) - o
2 1+ (1+u) (1+Ap) 1+2 (1 A +A} 2 (1+u) (1+A;) <1+2uA1+A1)
0 0 1 0
3 1 2 1+ A 1 1 2 1+4 A 1 1
0 0 2. + H + AL R S H H Ay L
2 1+p (1+p) (1+2;) 1+2 u Ay +A2 2 1+u (1+p) (1+Aq) 1+2 A +A? 2 1+p

The upper block for A;, A, is identical to the 2x2 matrix above, and is decoupled from the field-dependent lower
block. Just focusing on the lower block:
njzo)- MatrixForm[ (R ') oo = Table [FullSimplify[D[((Bi /. RGns0)), Aj] /. A3 >1/. R4 >»1/. A5~ 1,
Assumptions » u > 0&&y > 0 &&A; > 0&&A; > 0] , {3, 3,5}, {1, 3, 5}]]

Out[39]//MatrixForm=
1 1 2 1+ Ay (=1+p) (-1+Ap)°3 (~1+p) (-1+A1)°3

L + _ _
2 1+ (1+1) (1+A1) 1+2 p A +A} 2 (1+u) (1+B1) (1+2 B +A%) 2 (1+u) (1+A;) (1+2 puA;+A)
1 0 0
3 . 1 + 2u . 1+ Ay 1 1 21 1+p Ay 1 1 2u 1+ Ay
2 1+u (Ll+u) (1+A;1) 1+2L4A1+A§ 2 1+p (1+4p) (1+A;) l+2uA1+A§ 2 1+u (L+u) (1+A7) l+2uA1+A§

...provides the eigenvalues:

In[40):= EVh,o = FullSimplify[Eigenvalues [ (’R') h—)O] , Assumptions » u > 0 && A; > 0]

(-1+u) (-1+A;) 2+ 2 A
Out[40]= { ’ , }
(L+u) (1+A;) 1+2pn; +Aa2
For physical y and fixed points of A;, the dominant eigenvalue is
n41l= Ap = (EVpso) [[3]]
2+2uA;
Out[41]=

1+2 A+ A%

Note that A, < 2, and in particular, A, = 2 for the fixed point with A; = x, (te) = 0.For A; > 0,itis
in42)= Series[An, {A1, 0, 1}]

outf42]= 2 - 2 LAy + O[I-\;l}2

for any y, in accordance with Eq. (12).

Determination of magnetic exponent g for HN5 at y=0.1:

We can now use the above quantities to determine, for example, the magnetic exponent of the Ising model on HN5 at
y=0.1, that was given as £=0.205... in Fig. 3(a). To this end, we first have to locate the critical point (ic from the raw
couplings with the unstable FP-branch. Unlike for the model, in HNS this is not merely provided by the intersection
Ko (Ue) =x_ (Ue) , since HNS possesses two renormalizable couplings, Ajand A, that form an unstable FB-mani-
fold. As this FP is unstable, we proceed with a “shooting” and bi-sectioning approach where we evolve repeatedly the
RG-flow from the raw couplings at some value of u and either increase or decrease i with ever smaller increments,
depending on whether the RG-flow has reached a stable strong- or weak-coupling FP. After several itertions of this
procedure, the RG-flow will remain near the unstable FP for many recursions, indicating that we are close to .

We recall that the RG-recursions for A;and A,:

{B1, B2} /. RGpo
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2 (L+u)Ar Ry p?¥ (L+p) (1+8;)2

{ J

In the following, we have already iterated by hand the “shooting” and bi-sectioning procedure and found a good
approximation for pic = 0.165805 ... at y=0.1, confirmed by the fact that the RG-flow remains near the unstable
FP for many recursions (only i=10 are shown):

4
1+2uA1+A§ 2(1+2uA1+A§)

n45:= y = .1

u=0.165805160187

A; = MAZ

A; = u”(2y)

For[i = 0, i< 10, i++, Print[i, " ", {Al, Az} = {Bl, Bz} /. RGhO]]
outas= 0.1

outj46)= 0.165805
out471= 0.0274914
out48l= 0.698103

0 {0.0443104, 0.425408}

1 {0.0432307, 0.436516}

2 {0.0432979, 0.435808}

3 {0.0432937, 0.435852}

4 {0.043294, 0.435849}

5 {0.043294, 0.435849}

6 {0.043294, 0.435849}

7 {0.043294, 0.435849}

8 {0.043294, 0.435849}

9 {0.043294, 0.435849}

This value of pic = 0.165805 ... corresponds to a critical temperature of
ns0= Te = -2 / Log[u]
outs0)= 1.113

In particular, at this ric, we find the temperature exponent y. = 1log, [A_ (L) ]:
n51):= Y¢ = LOG[EVho [[1]]] / Log[2]
outj51]= 0.0629237

and the magnetic exponent y, = 1log, [An (ic) ]:
in52)= ¥n = LOg [ (EVh,o) [[3]1]1] / Log[2]
out52)= 0.987091

From the scaling relation in Eq. (14) we finally obtain:
ns3= B = (L-¥n) /¥e

outj53= 0.205158



