Spin Glasses in all Dimensions

Stefan Boettcher
Dept of Physics

Support: NSF-DMR, Emory URC

(Pre-)Prints: www.physics.emory.edu/faculty/boettcher
Overview:

• Bond-diluted Edwards-Anderson (EA) Spin Glasses
 ➔ Defect-Energy Scaling \(\sigma(\Delta E) \sim L^y \)
 ➔ Reduction of large diluted Lattices at \(T=0 \)
 ➔ “Stiffness” Exponent \(y \) for \(d=3,...,7 \)
 ➔ Lower critical dimension \(d_l=5/2 \)
 ➔ Corrections-to-Scaling Exponent \(\omega \)

• Sherrington-Kirkpatrick (SK) Mean-Field Spin Glass
 ➔ Ground State Energies
 ➔ Scaling Corrections + Energy Fluctuations
 ➔ Comparison with EA at \(d \to \infty \)
Lattice Spin Glasses (at $T=0$):

Defect-Energy:

![Diagram showing a grid with energy E_0 at specific coordinates]
Lattice Spin Glasses (at $T=0$):

Defect-Energy:

Measure Defect Energy $\Delta E = E_0 - E'_0$
Lattice Spin Glasses (at $T=0$):

Defect-Energy: Measure Defect Energy $\Delta E = E_0 - E'_0$ \[\Rightarrow \sigma(\Delta E) \sim L^y \]

- Low Energy Excitations (like “small oscillations”)

![Graph showing energy levels and defect energy calculation](image)
Lattice Spin Glasses (at $T=0$):

Defect-Energy:

Low Energy Excitations of bond-diluted Lattices
Lattice Spin Glasses (at $T=0$):

Defect-Energy: Collect $\sigma(\Delta E) \sim L^y$

Before: 100 Spins

Low Energy Excitations of bond-diluted Lattices
Lattice Spin Glasses (at $T=0$):

Defect-Energy:

Collect $\sigma(\Delta E) \sim L^y$

Before: 100 Spins

After: 5 Spins

“Reduction” Algorithm (exact!) & Optimization Heuristic (τ-EO)

Low Energy Excitations of bond-diluted Lattices
Lattice Spin Glasses (at $T=0$):

Defect-Energy: Measure "Stiffness": $\sigma(\Delta E) \sim L^y$

How bond-diluted Lattices?

Why bond-diluted Lattices?

- Simpler Problem
- Larger Sizes L
- Better Scaling

σ (Stress), ΔE (Energy), L (Length), T_g (Glass Transition Temperature), $T=0$ (Zero Temperature), p_c (Critical Bond Density), ρ (Bond Density), $y>0$ (Exponent for Scaling), PM (Paramagnetic), SG (Spin-Glass)
Defect-Energy of diluted Lattices:

- $\pm J$-Glasses on Lattices of size L and density p.
- Defect-Energy $\sigma(\Delta E)$ with Reduction & Heuristic (τ-EO).
Stiffness Exponent y for Lattice Glasses:

\[\text{“Stiffness”: } \sigma(\Delta E) \sim L^y \]

\[y_3 = 0.24(1) \]
Stiffness Exponent y for Lattice Glasses:

“Stiffness”: $\sigma(\Delta E) \sim L^y$

- $d=3$: $y_3 = 0.24(1)$
- $d=4$: $y_4 = 0.61(1)$
Stiffness Exponent y for Lattice Glasses:

\[d=3 \]
\[y^3 = 0.24(1) \]

\[d=4 \]
\[y^4 = 0.61(1) \]
\[y^5 = 0.88(5) \]

\[d=5 \]

\[\text{“Stiffness”: } \sigma(\Delta E) \sim L^y \]
Stiffness Exponent y for Lattice Glasses:

“Stiffness”: $\sigma(\Delta E) \sim L^y$

$\begin{align*}
\text{d}=3 \\
y_3 &= 0.24(1) \\
y_4 &= 0.61(1) \\
y_5 &= 0.88(5) \\
y_6 &= 1.1(1)
\end{align*}$

$\begin{align*}
\text{d}=4 \\
\text{d}=5 \\
\text{d}=6
\end{align*}$
Stiffness Exponent γ for Lattice Glasses:

```
\text{"Stiffness"}: \sigma(\Delta E) \sim L^\gamma
```

For $d=3$:
- $y_3 = 0.24(1)$

For $d=4$:
- $y_4 = 0.61(1)$
- $y_5 = 0.88(5)$

For $d=5$:
- $y_6 = 1.1(1)$

For $d=6$:
- $y_7 = 1.24(5)$

For $d=7$:
- $y_7 = 1.24(5)$
Comparing with Theory:

“Stiffness”: $\sigma(\Delta E) \sim L^y$

$d_{\text{lower}} = 5/2$

$y_{\text{RSB}} = d(1-\rho)$
Other Evidence for $d_l=5/2$:

- **From Theory:** (Franz, Parisi & Virasoro, J. Phys. I 4, 1657, '94)
 Effective Mean Field calculation near T_g, where Replica Symmetry Breaking (RSB) disappears (i.e. $T_g \rightarrow 0$) for $d_l=5/2$.

- **From Numerics:**

 Know:

 $T_g \approx \sqrt{2d}$ \hspace{1cm} (d \rightarrow \infty)

 $T_g \approx \sqrt{d-d_l}$ \hspace{1cm} (d \rightarrow d_l)

 Data from:

 - MC (Ballesteros et al) for d=3,4
 - High-T Series (Klein et al) for d\geq5
Corrections to Scaling in Spin Glasses:

Ground State Energy: \(E(L) \sim e_0 L^d + A L^y \) \((L \rightarrow \infty)\)

Diagram

- \(d=5 \)
- \(p=0.13 \)
- \(L=7 \ldots 15 \)
Comprehensive View on Spin Glasses:

A Set of Exponents:

1) Distribution $P(e_0)$, width $\sigma(e_0) \sim N^{-\rho} = L^{-d\rho}$
 - In EA: $\rho = \frac{1}{2}$ (Wehr&Aizenman \rightarrow exact!)

2) Distribution $P(\Delta E_0)$, width $\sigma(\Delta E_0) \sim N^{y/d} = L^y$
 - In EA: $y \approx 0.24,...,1.2$ for $d=3,...,7$

3) Corrections-to-Scaling: $e_0(N)-e_0(\infty) \sim N^{-\omega/d} = L^{-\omega}$
 - In EA: $\omega/d = 1 - y/d$
\(\tau \)-EO for Sherrington-Kirkpatrick (SK):

- Mean-Field \((d \to \infty) \) Spin Glasses:
Sherrington-Kirkpatrick (SK) at T=0:

- PDF for E_0 from *exact* Enumeration:
τ-EO for Sherrington-Kirkpatrick (SK):

- Mean-Field \((d \to \infty)\) Spin Glasses:

Fluctuation Exponent \(\rho = 3/4\)
Comparing with Theory:

“Stiffness”: \(\sigma(\Delta E) \sim L^y \)
Comprehensive View on Spin Glasses:

1) Distribution $P(e_0)$, width $\sigma(e_0) \sim N^{-\rho} = L^{-d\rho}$
 - In EA: $\rho = \frac{1}{2}$ (Gaussian)
 - In SK: $\rho \approx \frac{3}{4}$ (Highly Skewed)

2) Distribution $P(\Delta E_0)$, width $\sigma(\Delta E_0) \sim N^{y/d} = L^y$
 - In EA: $y \approx 0.24, \ldots, 1.2$ for $d=3, \ldots, 7$
 - In SK: $y/d = 1 - \rho \rightarrow 1/4$, too high for EA at $d \rightarrow \infty$

3) Corrections-to-Scaling: $e_0(N) - e_0(\infty) \sim N^{-\omega/d} = L^{-\omega}$
 - In EA: $\omega/d = 1 - y/d$
 - In SK: $\omega/d \approx 2/3 \neq 1 - y/d$
\textbf{\tau-EO for Bethe Lattices:}

EO for 3-connected Bethe Lattice Glass w/ Replica Sym. Breaking:

\begin{itemize}
 \item EO
 \item fit
 \item 1RSB
 \item RS
\end{itemize}

ε_3 vs $1/n^{2/3}$

- EO data,
 - [PRB67(03)060403R]

- Replica Theory:
 - $\iff 1$RSB,
 - \iff no RSB,
 - [J.Stat.Phys.111(03)1]

Scaling corrections
\textbf{\texttau-EO for Bethe Lattices:}

GS variance for z-connected Bethe Lattice Glass:

$\sigma/N^{1/2}$ vs $N/z^{2.3}$

- $\rho \approx 3/4$
- $z \sim N$ limit (SK only!)
- z finite (Bethe L)
- $\rho = 1/2$
Conclusions:

- **Bond-Diluted Lattices:**
 - Reducing dilute Lattices \Rightarrow reach larger L
 - Finite-Size Scaling \Rightarrow extended Scaling Regime
 - **Accurate Scaling Exponents** (Stiffness y, CtS ω) ...
 - ...even in high dimensions
 - Allows **Comparison with MFT**
 - Allows Prediction of **lower critical dimension** $d_t=5/2$.

Outlook:

- **Reduction Algorithm:**
 - Determining $T_g \sim (p-p_c)^\phi$ \Rightarrow Experimentally Testable!
 - Determining fractal exponent of droplets.