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UNIT 1:  DESIGN OF HEAT FINS:  HEAT CONDUCTION, FOURIER SERIES, AND FINITE 

DIFFERENCE APPROXIMATION 

 Heat conduction is a wonderland for mathematical analysis, numerical computation, and 

experiment.  It’s also highly practical:  engineers have to make sure engines don’t melt and computer 

chips don’t overheat. 

 

Lecture 1:  Fourier’s law 

(Lienhard and Lienhard pp. 10-17, 19-20) 

 Heat is the flow of thermal energy from a warmer place to a cooler place.  There are three 

kinds of heat transfer: 

 Conduction:  Heat flow through motionless materials. 

 Convection:  Heat flow through moving fluids. 

 Radiation:  Heat flow through electromagnetic waves. 

 This unit is primarily concerned with heat conduction.  We will give attention to convection only 

because convective heat flow at the surface of a solid affects the conductive heat flow within the solid. 

 We use the symbol Q to represent heat transfer rate.  Q has units of watts. 

 What happens when heat flows into or out of a mass?  The temperature T changes: 

 Qin – Qout = mc dT/dt, 

where m is mass and c is called “specific heat.”  This formula is the time derivative of a calorimetry 

equation you may have used in chemistry (energy transferred = mcT). 

 If Q is the rate at which heat is flowing through a solid with cross-sectional area A, q = Q/A is 

the heat flux. 

 Fourier’s law states that heat flux is proportional to thermal gradient: 

 q = -k dT/dx, 

where k is thermal conductivity.  Sometimes we care only about the magnitude of q, but what does the 

sign mean?  Positive q represents heat flux in the direction of positive x.  Negative q represents heat flux 

in the direction of negative x. 

 If heat flux is constant throughout a solid, then dT/dx can be replaced by T/x: 
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 |q| = kT/x = constant. 

 When is heat flux constant?  In one-dimensional, steady-state heat flow.  For example, if the 

two sides of a wall are held at two fixed temperatures, or the two ends of a laterally insulated wire are 

held at two fixed temperatures, then the heat flow is approximately one-dimensional and constant. 

Example (from Lienhard and Lienhard) 

A copper plate that is 3 mm thick is sandwiched between stainless steel plates that are each 2 mm thick.  

The left surface of the sandwich is held at 400 C, and the right surface is held at 100 C.  The thermal 

conductivity of stainless steel is 17 W/(Km), and the thermal conductivity of copper is 373 W/(Km).  

What are the temperatures at the left and right surfaces of the copper plate?   

Solution 

This is a case of one-dimensional steady state heat flow, so q is constant.  

 (q through steel plate on left) = (q through the copper plate) = (q through steel plate on right) 

 kSteelTsteel/(2 mm) = kCulTCu/(3 mm) = kSteelTsteel/(2 mm) 

(Why must Tsteel be the same for both steel plates?) 

We also know that Tsteel + TCu + Tsteel = 300 C, the total temperature difference across the sandwich.   

We now have two equations in two unknowns and can find Tsteel = 145 K and TCu = 10 K.  From this, 

we see that the temperatures on the two sides of the copper plate are 255 C and 245 C. 

Convective boundary conditions 

 It would be nice if boundary conditions were always specified surface temperatures.  Sometimes, 

instead, we have convection at surfaces.  Convective heat flow is proportional to the difference between 

the surface temperature and the surrounding temperature (Newton’s law of cooling): 

400 C 
100 C 
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  
 TThq surface  

where T is the temperature of the surrounding fluid (possibly air), and h  is called the heat transfer 

coefficient.  A convective boundary condition requires convective heat flow at the surface to equal the 

conductive heat flow at the surface: 

 
surface

surface
dx

dT
kTTh    

Let’s try to get rid of the absolute value bars.  Consider a slab between x1 and x2, where x1 < x2.  Suppose 

both surfaces are warmer than their surroundings, so heat flows out through the surfaces (heat flows from 

hot to cold): 

      T(x) 

 

 

          x 

       x1    <     x2 

 

We see that dT/dx is positive at x1 and negative at x2.  Therefore the convective boundary condition at x1 

is 

   
1

1

xdx

dT
kTxTh  

 

and at x2 it is (notice the minus sign!) 

   
2

2

xdx

dT
kTxTh  

. 

 These equations also work if the slab is colder than its surroundings.  Why?  Draw T(x) and 

examine the slope at the surfaces.  What if the temperature throughout the slab is hotter than the 

surrounding fluid on one side but colder than the surrounding fluid on the other side? 

Lecture 2:  The One-Dimensional Heat Equation 

(Lienhard and Lienhard pp. 17-19, 56-61) 

 Now we’re going to use Fourier’s law to derive the one-dimensional heat equation.  Please pay 

attention to the “tiny volume analysis” that we’re about to do because we’ll use this technique throughout 

the semester. 
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 Consider a very thin slice of a solid with thickness x and cross-sectional area A (perpendicular 

to the diagram).  Heat Q(x) flows in from the left, and Q(x+x) flows out through the right.  The 

temperature changes according to 

 Qin – Qout = mc T/t 

which is 

 Q(x) – Q(x+x) = mc T/t. 

(I’m using “” now because T in the tiny volume will 

depend on both position and time.) 

Now, using q = Q/A, 

 A q(x) – A q(x+x) = mc T/t. 

Next, we use q = -k T/x: 
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Now let’s write m in terms of density , so m = Ax: 
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Now let’s think about the approximation dxxfxfdxxf )(')()(  .  This just means that any 

function is approximately linear if you zoom in close enough.  Since f’(x) is also a function, it’s also true 

that dxxfxfdxxf )('')(')('  .  Therefore 
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 Plugging this in, 

  
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
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
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Now we divide both sides by Ax: 
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. 

 Finally, defining  = k/c as the thermal diffusivity, we have the heat equation in one dimension: 

Q(x) Q(x+x) 
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First, let’s consider steady-state heat flow, so the time derivative is 0: 

 d2T/dx2 = 0 

Example:  Steady-state slab 

A slab has one surface at temperature T1 at x = 0, and the other surface is at temperature T2 at x = L.  

Determine the steady-state temperature T(x) throughout the slab. 

Solution 

We can confirm that the solution to d2T/dx2 = 0 is T = C1x + C2, where C1 and C2 are constants that we 

have to determine from the boundary conditions:  T(0) = T1 and T(L) = T2.  Doing the algebra, we obtain 

T = T1 + (T2 – T1)x/L  

Example:  Steady-state slab with convection on one side 

A slab has one surface at temperature T1 at x = 0, and the other surface at x = L is subject to convective 

heat transfer with the surroundings at temperature T.  Determine the steady-state temperature T(x) 

throughout the slab. 

Solution 

 As before, the solution to the steady-state heat equation is T = C1x + C2, so we only have to 

determine the constants.  The boundary conditions are T(0) = T1 and h [T(L) - T] = -k dT/dx (at x = L), 

where T(L) = C1L + C2, and dT/dx = C1.  Doing the algebra results in T = T1 + (T - T1) h x/(k + h L). 

Internal energy generation 

 We’re going to add one term to the heat equation to account for internal energy 

generation.  For example, the hardening of concrete is exothermic:  thermal energy is 

generated through the substance.  Internal energy generation is represented by q , which 

has units of W/m3:  energy generated per unit volume per unit time. 

 To derive a more general form of the heat equation, again we’ll begin with 

 Qin – Qout = mc T/t 

which now is 

 Q(x) + q V – Q(x+x) = mc T/t. 

Now, using q = Q/A and V = Ax, 

 A q(x) + q Ax – A q(x+x) = mc T/t. 

Next, we use q = -k T/t: 
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And as before, we write m = Ax and divide by Ax: 
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So we arrive at  
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Example:  An exothermic slab 

A slab of concrete is hardening such that its internal energy generation is q .  On side of the wall is at x = 

0, and the other is at x = L.  Both surfaces of the wall are held at T.  Determine T(x). 

Solution 

In steady state, the time derivative is 0, so 

 
k

q

dx

Td 


2

2

. 

If we integrate twice, we find the general solution 

 T = (- q /2k)x2 + C1x + C2 

To determine C1 and C2, we use the boundary conditions, T(0)= T(L) = T.  Plugging the boundary 

conditions into the general solution yields: 

 T(0) = T:  C2 = T 

 T(L) = T:  (- q /2k)L2 + C1L + C2 = T 

Solving for C1:  C1 = q L/2k.  So the solution is 

 T = (- q /2k)x2 + q Lx/2k + T 

The temperature distribution is parabolic with a peak at the center of the slab.  Why doesn’t the 

temperature change with time?  Why isn’t temperature increasing since an exothermic process is 

occurring throughout? 
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Lecture 3:  The lumped-capacity (uniform temperature) approximation 

(Lienhard and Lienhard pp. 22-26) 

 If an object is small and conductive, its temperature may be approximately uniform, even if it’s 

heating up or cooling off.  Suppose a hot copper bead at temperature T is cooling off in air at temperature 

T.  We begin with 

 Qin – Qout = mc dT/dt. 

 Qin = 0, and Qout, the convective heat loss to the air, is  

   TTAhqAQout . 

So, 

  
dt

dT
mcTTAh  

. 

Defining  = T - T, 

 
dt

d
mcAh


  . 

 Now we can separate variables:  put dt on one side, and everything with  in it on the other: 

 


d
dt
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Integrating both sides gives 

 ln

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mc

Ah
, 

where C is a constant of integration.  Solving for : 
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where C’ = eC is a new constant defined for convenience.  Replacing  with T - T, 
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If initial temperature T(0) = Ti, then we find C’ = Ti - T, so 
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 Now we’d like to know when this formula is valid.  Our assumption was that T was uniform 

throughout the object.  When is this approximately true?  What’s really happening is that heat is flowing 

convectively out of the object at the surfaces, as heat is flowing conductively to the surfaces from 

the interior of the object.  Let’s suppose that the temperature in the center of the object is T larger than 

T at the surface.  Then the conductive heat flow is approximately 

 q  kT/L, 

where L is a “characteristic length” of the object (its radius, if it’s a sphere). 

 Conductive heat flow to the surfaces equals convective flow from the surfaces: 

   TThq . 

Setting conductive and convective heat flow equal, and solving for T: 

   TT
k

hL
T . 

If this is small, temperature is approximately uniform.  Specifically, if 
k

hL
 << 1, temperature in the 

object is approximately uniform.  
k

hL
 is called the Biot number:  Bi = 

k

hL
.  If Bi > 1, temperature is 

not uniform, but as Bi increases, the surface temperature approaches T. 

 Why is it impossible for the temperature of the bead to be exactly uniform if it’s not at the same 

temperature as its surroundings? 

Lecture 4:  Heat fins 

(Lienhard and Lienhard pp. 163-173, 176-177) 

 A very practical application of heat conduction is in the design of heat fins.  Heat fins are used to 

increase the rate of convective heat transfer, to cool off engines and electronics, for example. 

 To analyze a heat fin, let’s assume it has constant cross-sectional area A with perimeter P.  At x = 

0, the fin is in contact with a solid at temperature T0.  The fin has length L and is surrounded by a fluid at 

temperature T.  Let the heat transfer coefficient of the fin be h , except at the tip (x = L), where it is Lh . 

 

 

   

 

 

 

 

Q(x) Q(x+x) 

Qconv 

x = 0  x = L  

T0 

T 
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 To derive a fundamental equation, we once again analyze a tiny volume with length x.  In steady 

state, the heat flowing in equals the heat flowing out: 

 Q(x) = Qconv + Q(x+x) 

Using Q(x) = qA and    TTxPhQconv  , where Px (perimeter  length) is the external surface area 

of the tiny volume, we find 

   
xxx dx

dT
kATTxPh

dx

dT
kA






   

Rearranging and dividing by x: 

  

 



TTPh
x
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
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once again using x
dx

Td
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2
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


, and solving for d2T/dx2: 

 
 

 
 


 TTm

kA

TTPh

dx

Td 2

2

2

,  

where 
kA

Ph
m  is defined for convenience.  This fin parameter can be thought of as “convectiveness” 

divided by “conductiveness.” 

 To solve the differential equation, we need the boundary conditions 

 T(0) = T0 

and, at x = L, conduction equals convection: 

   TLTAh
dx

dT
kA L

L

)( . 

To simplify the differential equation, we again define  = T - T, so 

 
 2

2

2

m
dx

d
 . 

The general solution is 

 
mxmx eCeC  21 , 

and we must use the boundary conditions to solve for the constants. 
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 The boundary conditions become 

 (0) = T0 - T, so C1 + C2 = T0 - T 

and 

 )(Lh
dx

d
k L

L




 , so    mLmL
L

mLmL eCeCheCeCkm   2121 . 

Now we have two equations in two unknowns, C1 and C2.  It’s straightforward but tedious to do the 

algebra to solve for them.  Using the first boundary condition, we solve for C2 = T0 - T - C1.  Then we 

can plug this into the second boundary condition: 

    mLmL
L

mLmL eCTTeCheCTTeCkm 





  )()( 101101  

Taking terms with C1 to one side and all other terms to the other: 
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L
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L eTThkmeekmCeehC 



  ))(()()( 011  

It will be convenient to use the hyperbolic trig functions 
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Solving for C1, 
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It takes some algebra (but just straightforward algebra) to find 
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 Now we simply plug these into the general solution: 

 
 
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Doing some algebra puts this is a slightly nicer form: 

 
 

)cosh()sinh(

)](sinh[()](cosh[()( 0

mLkmmLh
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L

L




   

This is a very versatile equation.  The fun really begins when we start investigating special cases.  Let’s 

consider an insulated tip ( Lh = 0): 
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)cosh(

)](cosh[()( 0

mL

xLmTT 
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Let’s further specialize by setting x = L to find (L), the temperature (relative to ambient) of an insulated 

tip: 

  
)cosh(

)(
)( 0

mL

TT
L 

 , or 
 


 T

mL

TT
LT

)cosh(

)(
)( 0

 

 What does this function look like?  As mL gets big, 1/cosh(mL)  e-mL/2.  This means that as L 

increases, the temperature at the tip decreases exponentially. 

 

We see that for L > 5/m, the temperature at the tip is approximately T. 

 What’s most important is the heat flow from the object.  This is what we’re trying to maximize.  

Heat flow from the object into the fin at x = 0 is 

 Q = -kA dT/dx = -kA d/dx, where the derivative is evaluated at x = 0. 

For an insulated tip, 

 )tanh()(
)cosh(

)sinh()(
0

0 mLTTkAm
mL

mLTTkAm
Q 

 


  

Plotting Q as a function of L is just a plot of tanh, assuming fixed m: 
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We see that increasing L beyond 3/m doesn’t improve heat flow.  Conceptually, why is this the case? 

Lecture 5:  Fourier series—invented to solve the heat equation! 

(Lienhard and Lienhard pp. 203-207) 

 We’ve looked at steady state heat flow (no time dependence).  We also looked at the lumped-sum 

approximation (negligible spatial dependence).  What if temperature depends on both position and time?  

Then we have to solve the full heat equation, which has (partial) derivatives with respect to both time and 

position: 
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
2

2
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Example:  A lucky initial condition 

 The sides of a slab are held at 0 C:  T(0,t) = 0 and T(L,t).  The initial temperature distribution in 

the slab is T(x,0) = T0sin(x/L).  Determine the temperature distribution T(x,t) at all times. 

Solution 

 The way to solve this partial differential equation is to assume that the temperature T(x,t) is a 

product of a function of x and a function of t:  T(x,t) = X(x)(t).  (When is this assumption true?  It’s true 

as long as there are no constant terms in the boundary conditions.  If the temperature was T0 instead of 0 

at the boundaries, we’d have to define  = T – T0 to make  = 0 at the boundaries.) 

 Now we plug T(x,t) = X(x)(t) into the heat equation: 
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Now I’m going to divide both sides by X to get all the x dependence on one side and all the t dependence 

on the other.  (I’ll divide by  too.) 
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 The left hand side is a function of x (which can’t depend on t).  The right hand side is a function 

of t (which can’t depend on x).  Then how can the two sides possibly equal each other?  Only if they’re 

both equal to the same constant!  I could call the constant C or k, but for later convenience, I’ll call the 

constant -2.  
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
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 Now I can separately determine X(x) and (t): 
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 Let’s find X first: 

 X
dx

Xd 2

2

2

  

What functions are proportional to the negative of their second derivatives?  Sines and cosines!  By 

plugging the following expression into the preceding equation, you can confirm that 

 X = Asin(x) + Bcos(x). 

A and B are constants that we’ll determine from the boundary conditions and initial condition.  If you 

didn’t know in advance to write Asin(x) + Bcos(x), you could have written Asin(kx) + Bcos(kx) and 

plugged into the differential equation to determine k = . 

 Now we’ll solve the equation for : 

 
 2

dt

d
 

What function is proportional to its own first derivative?  An exponential function: 

  = exp(-2t) 

If we multiplied exp(-2) by an unknown constant, it would still satisfy the differential equation.  

However, since we’re going to multiply  and X together, we can safely ignore the multiplicative constant 

for ; equivalently, we can pretend that A and B were already multiplied by the multiplicative constant for 

. 
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 So T(x,t) = X(x)(t) = [Asin(x) + Bcos(x)]exp(-2t). 

 To determine A, B, and , we apply the boundary conditions and initial condition. 

 The boundary condition on the left is T(0,t) = 0.  If we plug this into T(x,t), we find B exp(-2t) 

= 0, which can only be true at all t if B = 0.  Now we only have A and  left to solve for: 

 T(x,t) = Asin(x)exp(-2t) 

 The boundary condition on the right is T(L,t) = 0.  If we plug this into T(x,t), we find  

 Asin(L)exp(-2t) = 0 

 We’d better not satisfy this by setting A = 0 because then T(x,t) = 0 and we can’t satisfy the 

initial condition.  So we must satisfy this boundary condition by setting sin(L) = 0, so  = n/L, where n 

is an unknown integer.  Now our expression for T(x,t) is  

 T(x,t) = Asin(nx/L)exp[-(n/L)2t] 

 Finally, we look at the initial condition:  T(x,0) = T0sin(x/L).  Plugging this into T(x,t) yields 

 Asin(nx/L) = T0sin(x/L) 

 Evidently, the initial condition is satisfied if A = T0 and n = 1.  Therefore, the final solution is 

 T(x,t) = T0sin(x/L)exp[-(/L)2t] 

 We were lucky.  What if the initial condition isn’t a sinusoid that equals 0 at x = 0 and x = L? 

Example:  Uniform initial temperature 

 The sides of a slab are held at 0 C:  T(0,t) = 0 and T(L,t).  The initial temperature distribution in 

the slab is uniform:  T(x,0) = T0.  Determine the temperature distribution T(x,t) at all times. 

Solution 

 Everything except the initial condition is the same as in the previous problem.  And the initial 

condition was the last fact used.  So it’s still true that we need to solve the heat equation 

 
t

T

x

T









2

2

 . 

It’s still true that we define T(x,t) = X(x)(t) and find 

 
2

2

2 11







dt

d

dx

Xd

X
. 

It’s still true that a solution is  

 T(x,t) = X(x)(t) = [Asin(x) + Bcos(x)]exp(-2t). 

It’s still true that the boundary condition on the left requires B = 0, so  

 T(x,t) = Asin(x)exp(-2t). 
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It’s still true that the boundary condition on the right requires  = n/L, so 

 T(x,t) = Asin(nx/L)exp[-(n/L)2t]. 

Now, there’s no way this expression can satisfy the initial condition T(x,0) = T0.  So we must use the fact 

that the sum of solutions to a linear differential equation is also a solution.  So the general solution to 

the differential equation is actually 

 
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
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where each term in the sum can have a different coefficient An.  Now our job is to use the initial condition 

to solve for An for each term in the infinite sum!  The initial condition T(x,0) = T0 gives 

 0sin T
L

xn
A

n

n 










. 

This is called a “Fourier series expansion” of T0.  In fact, any function can be written as a sum of 

sinusoids (a Fourier series).  In this case, the function happens to be a constant. 

 We have a single equation with an infinite number of unknowns, An (n = 1, 2, 3, ….)!  How can 

we possibly find an infinite number of unknowns with a single equation?  We’ll use Fourier’s ingenious 

idea:  we’ll multiply both sides by sin(mx/L), where m is an integer, and integrate from 0 to L. 
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 This isn’t really new math; this is just a clever application of Calculus 1.  Since this isn’t a 

calculus class, we don’t need to discuss the method of solving these integrals; we can even just use an 

online integral calculator (wolfram alpha or integral-calculator.com).  However we do the integrals, we 

obtain an amazing result:  all the terms on the left hand side integrate to 0, except for n = m!  So we can 

set n = m and drop the terms that become 0: 
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 These are elementary integrals that we can do by hand, by using a table, or by using an online 

calculator.  The result is 

 AnL/2 = 2T0L/n for odd n,  

            = 0 for even n 

So An = 4T0/n for odd n, and 0 for even n.  We’ve now determined An for all positive integers n!  The 

final solution is thus 
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 Notice that the “higher order terms” (bigger n) have two characteristics:  the spatial dependence is 

wigglier (smaller distance between peaks), and the exponential decrease with time occurs much more 

rapidly.  The lowest order term (n = 1) has the least wiggly spatial dependence (it’s a single sinusoidal 

“hump”), and the slowest decay.  So over time, the temperature distribution evolves toward a single 

sinusoidal hump (the n = 1 term); the higher order terms decay away. 

 

 In my solution for T(x,t), why didn’t I allow the index n to be negative? 

Lecture 6:  Nonzero boundary conditions:  Tsteady(x) + Ttransient(x,t) 

 If we look at a single solution to the heat equation: 

 [Asin(x) + Bcos(x)]exp(-2t), 

we see that it always contains a term that exponentially decays to 0 over time.  So, unless the final, 

steady state of a system is 0 throughout, we need a steady-state term Ts(x) to add to the transient 

term Tt(x,t), which always decays away. 

 

Example:  Reversing the temperatures of the walls of a slab 

 The surfaces of a slab are set to 0 at x = 0 and T0 at x = L.  We know the steady state solution is 

Ts(x) = T0x/L.  But suppose the initial temperature distribution is T(x,0) = T0(L-x)/L, the mirror image of 

the final steady state distribution.  What is T(x,t):  how does the temperature distribution evolve from 

T0(L-x)/L to T0x/L?  
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Solution 

 The problem statement gives the steady state solution: 

 Ts(x) = T0x/L. 

(If this wasn’t given, we’d obtain it quickly from the steady state heat equation, d2Ts/dx2 = 0, combined 

with the boundary conditions.)   

 The full solution has a steady-state and a transient term: 

 T(x,t) = Ts(x) + Tt(x,t). 

Now we need the boundary conditions and initial condition on Tt(x,t).  Since Tt(x,t) = T(x,t) - Ts(x), 

 Tt(0,t) = T(0,t) - Ts(0) = 0 – 0 = 0 

and 

  Tt(L,t) = T(L,t) - Ts(L) = T0 – T0 = 0. 

Good!  The transient term always decays to 0, so we’ll have no trouble satisfying the boundary conditions 

at all t.  Now, what’s the initial condition on Tt(x,t)? 

 Tt(x,0) = T(x,0) - Ts(x) = T0(L-x)/L - T0x/L = T0(L-2x)/L. 

 Now we can plug T(x,t) = Ts(x) + Tt(x,t) into the heat equation: 
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But since d2Ts/dx2 = 0, 
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Tt must independently satisfy the heat equation. 

 The method we use to solve for this function, whose boundary conditions are 0, is identical to the 

method used in the previous lecture.  We set Tt(x,t) = X(x)(t) and just as before find 
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X
. 

It’s still true that a solution is  

 Tt(x,t) = X(x)(t) = [Asin(x) + Bcos(x)]exp(-2t). 

It’s still true that the boundary condition on the left requires B = 0, so  

 Tt(x,t) = Asin(x)exp(-2t). 

It’s still true that the boundary condition on the right requires  = n/L, so 

 Tt(x,t) = Asin(nx/L)exp[-(n/L)2t]. 
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It’s still true that the general solution is 
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To solve for An, we apply the initial condition Tt(x,0) = T0(L-2x)/L: 
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As before, we multiply by sin(mx) and integrate from 0 to L.  As before, all the terms on the left 

integrate to 0 except m = n.  So we’re left with: 
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Doing the integrals (using an online calculator, for example) gives 

 AnL/2 = 2T0L/n -(2T0/L)(L2/n) = 0 for odd n,  

            = 0 - (2T0/L)(-L2/n) = 2T0L/n  for even n 

So 
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and finally 

 
 






























...6,4,2

2

00 expsin
14

),()(),(
n

ts t
L

n

L

xn

n

T

L

xT
txTxTtxT







 

How do I know if I’m right?  I plot the equation in MATLAB and see if the temperature changes as 

expected:  gradually evolving from the initial condition T(x,0) = T0(L-x)/L to the final steady state 

solution Ts = T0x/L. 
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 Which of the curves implies the greatest heat flux at the center of the slab?  Which implies the 

least? 

Lecture 7:  Finite difference approxmation 

(Yener and Kakac, Heat Conduction, 4th ed., Ch. 12) 

 We’ve seen that solving the heat equation can take a lot of work.  Depending on the boundary 

conditions, it may even be impossible to find an exact solution!  Therefore, we need to develop a 

method of finding an approximate solution, using a computer.  (This is called a numerical solution, as 

opposed to an exact analytical solution.) 

 Let’s develop an approximate equation for two-dimensional heat flow.  Instead of a slab (through 

which heat flows in only one direction, approximately), we might think of a column.  We can impose 

different thermal boundary conditions on the four sides of a square column. 

 We divide our solid into tiny volumes xyz, where z is perpendicular to the diagram.  We 

assume the temperature is approximately uniform throughout each tiny volume.  We use the subscripts m 

and n to represent the x and y coordinates, as shown in the diagram, and the superscript p represents time.  

We want to determine T(x,y,t+t) = Tp+1
m,n. 

 We do the energy balance 

 Qin – Qout = mc T/t  

 QL + QB – QR – QT = mc T/t  
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     T(x,y+y,t)  

    = Tp
m,n+1 

    QT  

      

  T(x-x,y,t)      QL  T(x,y,t)             QR  T(x+x,y,t) y  

 = Tp
m-1,n   = Tp

m,n   = Tp
m+1,n 

                 

       QB 

     T(x,y-y,t) 

    = Tp
m,n-1   

    x 

Now use Q = qA = -kA  (spatial derivative of T), with A = yz or xz, the surface through which 

heat flows into or out of the central volume. 

 -kyz(T/x on the left) - kxz(T/y on the bottom) + kyz(T/x on the right) +   

  kxz(T/y on the top) = mc T/t 

The next (key) step is to replace the derivatives with finite differences: 

 -kyz(Tp
m,n – Tp

m-1,n)/x - kxz(Tp
m,n – Tp

m,n-1)/y + kyz(Tp
m+1,n – Tp

m,n)/x +   

   kxz(Tp
m,n+1 – Tp

m)/y =  mc(Tp+1
m,n – Tp

m,n)/t 

Divide by mc and use m = xyz and  =k/c: 

-(Tp
m,n – Tp

m-1,n)/(x)2 - (Tp
m,n – Tp

m,n-1)/(y)2 + (Tp
m+1,n – Tp

m,n)/(x)2 + (Tp
m,n+1 – Tp

m,n)/(y)2                    

 = (Tp+1
m,n – Tp

m,n)/t 

Finally, collect terms: 

 (Tp
m+1,n + Tp

m-1,n – 2Tp
m,n)/(x)2 + (Tp

m,n+1 + Tp
m,n-1 – 2Tp

m,n)/(y)2 = (Tp+1
m,n – Tp

m,n)/t 

We see that this is the approximation to the two-dimensional heat equation, where 

 2T/x2  (Tp
m+1,n + Tp

m-1,n – 2Tp
m,n)/(x)2, 

 2T/y2  (Tp
m,n+1 + Tp

m,n-1 – 2Tp
m,n)/(y)2, 

and 

 T/t  (Tp+1
m,n – Tp

m,n)/t. 
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For one-dimensional heat flow, simply drop the y term. 

 How do we use the finite difference approximation to solve the heat equation?  There are separate 

strategies for time-dependent and steady-state heat flow.  The time-dependent case is actually easier, 

assuming we know initial conditions.  We simply solve for Tp+1
m,n: 

 Tp+1
m,n = Tp

m,n + t(Tp
m+1,n + Tp

m-1,n – 2Tp
m,n)/(x)2 + t(Tp

m,n+1 + Tp
m,n-1 – 2Tp

m,n)/(y)2   

and step forward in time.  Specifically: 

 Choose small values of x, y, and t.  Requirement:  the total coefficient of Tp
m,n in the previous 

equation must be positive, so 1 - 2t/(x2) - 2t/(y2) > 0.    

 Given initial conditions, we know T1
m,n for all points.  (I’m using p = 1 to represent t = 0, so p = 2 

represents t = t, p = 3 represents t = 2t, etc.) 

 Determine T2
m,n for all interior points using the equation above.  Apply boundary conditions for 

all points on the boundaries.  (If the temperature is specified at the boundaries, this is easy.  We’ll 

look at convective boundary conditions soon.) 

 Iterate the previous step:  Knowing T2
m,n, we can use the equation to determine T3

m,n.  Continue 

for as long as desired.   

 The steady-state case is harder because there’s no starting point.  We solve for Tm,n and drop all 

p’s because there’s no time dependence: 

 Tm,n = [(Tm+1,n + Tm-1,n)/(x)2 + (Tm,n+1 + Tm,n-1)/(y)2]/[2/(x)2 + 2/(y)2] 

This equation is valid for every interior point in the solid.  (Assume for now that the temperatures are 

specified on the boundaries.)  If we have a grid of 100  100 interior points, we have 10,000 unknown 

temperatures Tm,n, and 10,000 equations.  How do we solve 10,000 equations in 10,000 unknowns?  The 

simplest method is the Gauss-Seidel method: 

 Guess the temperature Tm,n at all points. 

 Now calculate Tm,n at all points using the above equation.  (The temperature at each point depends 

on its neighbors.)  This is an improvement over the initial guess. 

 Iterate until the temperature changes negligibly from one iteration to the next. 

Convective boundary conditions 

 Let’s place a convective boundary condition on the right.  We’ll put our rightmost points right 

along the boundary.  Once again we apply the energy balance: 

 Qin – Qout = mc T/t  

 QL + QB – QR – QT = mc T/t  

Ql is the same as before, but QR is now hyz(Tp
m,n - T), and the surface area through which QB and QT 

flow is only (x/2)z.  (Tp
m,n now represents the temperature in the little rectangle.) 

 -kyz(Tp
m,n – Tp

m-1,n)/x - kxz(Tp
m,n – Tp

m,n-1)/2y - hyz(Tp
m,n - T) +    

  kxz(Tp
m,n+1 – Tp

m)/2y =  mc(Tp+1
m,n – Tp

m,n)/t 

As before, divide by mc and use m = (x/2)yz and  =k/c: 
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 -2(Tp
m,n – Tp

m-1,n)/(x)2 - h(Tp
m,n - T)/kx + (Tp

m+1,n – Tp
m,n)/(x)2 + (Tp

m,n+1 – Tp
m,n)/(y)2                    

 = (Tp+1
m,n – Tp

m,n)/t 

This result can be manipulated as necessary. 

     T(x,y+y,t)  

    = Tp
m,n+1 

      QT  

       

  T(x-x,y,t)      QL  T(x,y,t) = Tp
m,n             h, T  y  

 = Tp
m-1,n       QR    

                 

         QB 

      T(x,y-y,t) 

    = Tp
m,n-1   

          x 

 For an insulated boundary, set h = 0.  For a corner with convective boundaries, the expression 

may be derived by drawing the appropriate diagram and following the procedure used above.  Do we need 

a special expression for a corner where both walls have fixed temperatures? 

Lecture 8:  Radially symmetric temperature distribution 

(Lienhard and Lienhard pp. 67-68) 

 Let’s derive the heat equation in cylindrical coordinates, assuming the temperature is radially 

symmetric (no dependence on  or z).  Our tiny volume in this case will be a cylindrical shell, of 

infinitesimal thickness r, and height L (perpendicular to the diagram): 

   

       Q(r+r)         q V 

       Q(r)       r 

 

 

     r + r 

I’ll allow for the possibility of internal energy generation ( q ).  As always, we begin with the energy 

balance: 

 Qin – Qout = mc T/t 
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 Q(r) + q V – Q(r+r) = mc T/t, 

where the volume of a cylindrical shell is V = (r+r)2L - r2L  2rrL, dropping the (r)2 term because 

r << r.  (The figure isn’t to scale; r approaches infinitesimal dr.)  Using Q = qA = (-kT/r)A, 
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I’ll plug this in and drop the (r)2 term from the result: 
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I’ll use m = 2rrL and divide by 2rrLk: 
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This is usually written slightly more compactly as 
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 The same strategy allows us to derive the heat equation for a spherically symmetric temperature 

distribution.  The only difference is that the volume of a spherical shell is (4/3)(r+r)3 – (4/3)r3  

4r2r, and the final result is 
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If you’ve taken multivariable calculus, you recognize that we’ve derived the radial part of the Laplacian 

in cylindrical and spherical coordinates. 

Example:  Cylinder with fixed wall temperatures 

 A cylindrical shell has inner radius ri and outer radius ro.  The temperature of the inner surface is 

Ti, and the temperature of the outer surface is To.  Determine the temperature throughout the cylindrical 

shell. 

Solution 

 Since there’s no internal heat generation and no time dependence, the heat equation reduces to 
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Integrate this once: 

 r(dT/dr) = C1, 

where C1 is a constant of integration.  Bring dr/r to the right side and integrate a second time: 

 T = C1lnr + C2. 

Solve for C1 and C2 using the boundary conditions, T(ri) = Ti and T(ro) = To: 

 Ti = C1lnri + C2 

 To = C1lnro + C2 

Subtract one from the other to find 

 Ti - To = C1lnri - C1lnro, 

so 

 C1 = (Ti – To)/ln(ri/ro). 

Plugging this into the Ti equation: 

 Ti = (Ti – To)lnri/ln(ri/ro) + C2, 

so  

 C2 = Ti - (Ti – To)lnri/ln(ri/ro). 

 The final result is 

 T = (Ti – To)lnr/ln(ri/ro) + Ti - (Ti – To)lnri/ln(ri/ro) = Ti + (Ti – To)ln(r/ri)/ln(ri/ro) 

 Does this work regardless of which surface is hotter? 

Lecture 9:  The two-dimensional heat equation  

(Lienhard and Lienhard pp. 146-150) 

 We’ve already derived the one-dimensional heat equation, and the finite-difference 

approximation of the two-dimensional heat equation.  If we wanted, we could consider a tiny volume and 

derive the two-dimensional heat equation: 
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Let’s look at the steady-state case: 
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Example:  Another lucky boundary condition 

 A long slab has surfaces at x = 0, x = L, y = 0, and y = (something very large  ).  The surfaces 

at x = 0 and x = L are held at 0C.  The temperature distribution along the y = 0 surface is T(x,0) = 

sin(x/L).  Determine T(x,y) throughout the slab. 

Solution 

 When T depended on x and t, we wrote T(x,t) = X(x)(t).  Similarly, when T depends on x and y, 

we write T(x,y) = X(x)Y(y).  We plug this into the heat equation: 
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We divide both sides by XY: 
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 The left side is a function of x.  The right side is a function of y.  The only way they can equal 

each other is if they’re both equal to the same constant, which I’ll again call -2.  This gives us two 

differential equations, one in x, and one in y: 

 X
dx

Xd 2
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2

 . 

 We’ve seen the x equation before.  The solution is 

 X = Asin(x) + Bcos(x). 

The solution to the y equation is 

 Y = e-y, 

where I’m neglecting e+y because I don’t want infinite temperatures as I get far from y = 0.  I’m also 

neglecting the multiplicative constant because I’m going to multiply X and Y together, and I’ve included 

the constants in X. 

 So 

 T(x,y) = [Asin(x) + Bcos(x)]e-y. 
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Now we apply boundary conditions to determine A and B.  Since T(0,y) = 0, B = 0.  Since T(L,y) = 0,  

 sin(L) = 0, 

so  = n/L.  Our solution is now 

 T(x,y) = Asin(nx/L)e-ny/L, 

and the only unknowns are n and L.  Since T(x,0) = sin(x/L), we see that A =  and n = 1, so 

 T(x,y) = sin(x/L)e-y/L. 

 We’re done, but we were lucky.  What if the boundary condition T(x,0) is anything but a 

multiple of sin(nx/L)? 

Example:  A triangular thermal distribution at one wall 

 A long slab has surfaces at x = 0, x = L, y = 0, and y = (something very large  ).  The surfaces 

at x = 0 and x = L are held at 0C.  The temperature distribution along the y = 0 surface is T(x,0) = x for 

0<x<L/2, and T(x,0) = (L-x) for L/2<x<L.  Determine T(x,y) throughout the slab. 

Solution 

 Just as before, we separate variables, so T(x,y) = X(x)Y(y), and 
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Again, 

 X = Asin(x) + Bcos(x) 

 and 

 Y = e-y, 

so just as before, a solution is 

 T(x,y) = [Asin(x) + Bcos(x)]e-y. 

Even the boundary conditions at x = 0 and x = L are the same, so B = 0 and  = n/L.  Therefore a 

solution is 

 T(x,y) = Ansin(nx/L)e-ny/L, 
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but we’ll need a sum of these solutions to satisfy the final boundary condition at y = 0.  The complete 

solution is 

 
Lyn

n

n e
L

xn
AyxT /

3,2,1

sin),(  



 







 . 

Now all we have to do is solve for an infinite number of coefficients An.  We do this by using the 

boundary condition at y = 0: 
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 Luckily, Fourier’s ingenious idea works just as well here is it did before.  We multiply both sides 

by sin(mx/L) and integrate from 0 to L.  All the terms in the sum integrate to 0 except m = n, so we 

obtain 
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These are just integrals, and you can find the solutions using any method you like, including online 

integral calculators.  The result is 

 An = 4L(-1)(n-1)/2/2n2  for odd n; An = 0 for even n. 

Our final solution is therefore 
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 When I separated variables, how did I know to put the minus on the y side:
2

2

2

2 11

dy

Yd
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X
 ?  

Equivalently, how did I know to set both sides of this equation equation to -2 instead of +2?    
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UNIT 2:  DESIGN OF AMPLIFIERS:  OP AMPS, CIRCUIT ANALYSIS, AND LAPLACE 

TRANSFORMS  

 

 Circuit analysis doesn’t have much in common with heat conduction.  However, as promised, 

we’ll continue to practice the broadly applicable skills we’ve learned:  while analyzing circuits, we’ll use 

Fourier series (Problem Set 15), finite difference approximations (Problem Set 16), and the Arduino (Labs 

3 and 4).  Also, the new skill we’ll learn, Laplace transforms, will be applied to heat conduction (Problem 

Set 16).  

Lecture 10:  Op amps 

(Santiago, Ch. 10) 

 First let’s review the relationship between voltage and current in resistors, inductors, and 

capacitors: 

 

These equations are true if we draw the current I flowing from A to B.  Notice that the voltage across a 

resistor is proportional to current, the voltage across an inductor is proportional to the derivative of 

current, and the voltage across a capacitor is proportional to the integral of current (which is charge). 

 Notice, too, that these equations are true even if we don’t show the rest of the circuit.  We know 

that current only flows in a loop, but we don’t have to show the whole loop.  In fact, I’ll almost never 

show the whole loop like this: 
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I’ll imply exactly the same thing with this abbreviated diagram (where VB = 0, ground): 

  VA 

  

 

 

 

 I use the current-voltage relationships shown above for resistors, inductors, and capacitors; and I 

use Kirchhoff’s current rule.  I almost never explicitly use Kirchhoff’s voltage rule!  Let’s see how I 

analyze a useful circuit: 

 

 This circuit is called a voltage divider, and we’ll see many variations of it.  Here’s the key idea:  

current flows from (a battery or other power supply whose voltage is) Vin, through R1 and R2, and 

into ground; we assume (for now) that negligible current flows through the wire labeled Vout.  (This 

assumption is 100% true if nothing is connected to this wire:  if it’s just sticking out in space.  The Vin 

wire, on the other hand, must be connected to a voltage source.  If you wish, you may explicitly draw a 

battery whose negative terminal is connected to ground and whose positive terminal is connected to Vin.  

Even if we don’t draw it, this battery—or equivalent voltage source—is implied!) 
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 As long as we’re assuming that negligible current flows along the Vout wire (which is therefore 

just a label or tag), the same current must flow through R1 and R2.   

 The current through R1 is 

 I = (Vin – Vout)/R1, 

and the same current through R2 is 

 I = (Vout – 0)/R2. 

We can combine these equations to eliminate I and find Vout in terms of Vin, but the algebra is simpler if 

we write the current through the series combination: 

 I = (Vin – 0)/(R1 + R2). 

Make sure you understand where these equations come from!  All three of them are applications of 

VA – VB = IR, with current flowing from A to B.  If you combine any two of the three equations to 

eliminate I, you find 

 Vout = [R2/(R1 + R2)]Vin 

 Now we’re ready to introduce the op amp, which will allow you to easily design many useful 

circuits.  The op amp is made of many transistors and is usually packaged as an “integrated circuit” (a tiny 

black box with metal pins sticking out) with 8 pins.  However, we usually represent only three of those 

pins in a circuit diagram: 

 

 These three op amp terminals (which I label by their voltages) are 

 V+, the noninverting input 

 V-, the inverting input 

 Vout, the output 

 There are two Golden Rules of op amp operation: 

 Golden Rule for current:  I+ = I- = 0.  This is always (approximately) true.  No current flows in or 

out of the op amp inputs.  However, current may flow in or out of the output. 

 Golden Rule for voltage:  V+ = V-.  This is (approximately) true for most op amp circuits, but it 

depends on the circuit design.  More on this later. 

 Now let’s apply these rules to some simple but practical op amp circuits. 
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Follower 

 

 In this circuit, V+ = Vin and V- = Vout.  The voltage Golden Rule gives us Vout = Vin.  The output 

follows the input.  Although this is the simplest op amp circuit, its purpose may be the hardest to 

understand:  What’s the point of this circuit? 

 Think back to the voltage divider.   

 

Remember our dubious assumption that no current flows into Vout?  If we connect the voltage divider’s 

output to the follower’s input, then the assumption is guaranteed to be true, by the current Golden Rule. 
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Now V+ = [R2/(R1 + R2)]Vin, the output of the voltage divider, which is also the output of the op amp, 

because this is a follower circuit.  So we can apply our desired voltage, [R2/(R1 + R2)]Vin, across any 

resistor (known as a “load” in electronics jargon); the resistance of Rload will not affect the voltage 

across Rload.  The current through the load comes from the op amp output, not the voltage divider.  The 

follower circuit acts as a buffer that transmits a voltage without draining any current from the 

source (which would lower the output voltage).   

 If we connected the load directly to the output of the voltage divider, current would flow through 

the output wire of the voltage divider (our earlier assumption would be false), and the voltage across the 

load would be (confirm this) 
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Without the follower circuit, the output of the voltage divider depends on the load resistance, which 

is undesirable; we’d like to say, “The output of our voltage divider is [R2/(R1 + R2)]Vin, no matter what 

we apply this voltage across.” 
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Inverting amplifier 

  

 The voltage Golden Rule gives V- = 0 since V+ = 0 (ground).  The current Golden Rule requires I 

through R1 to equal I through R2; no current flows into the op amp input.  Applying Ohm’s law to each 

resistor: 

 I = (Vin – 0)/R1 

and 

 I = (0 - Vout)/R2, 

so 

 Vout = (-R2/R1)Vin. 

Noninverting amplifier 

 

 The voltage Golden Rule gives V- = Vin.  The current Golden Rule requires I through R1 to equal 

I through R2.  Applying Ohm’s law to each resistor: 

 I = (Vout – Vin)/R1 

and 

 I = (Vin- 0)/R2, 

so, after some algebra, 
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 Vout = (1 + R1/R2)Vin. 

Integrator 

 

 Here’s a circuit that does calculus!  The voltage Golden Rule sets V- = 0.  The current Golden 

Rule requires I through R to equal I through C.  Ohm’s law gives 

 I = (Vin – 0)/R1 

and the equivalent rule for capacitors, Q = C(0 – Vout), is differentiated to give 

 I = -C dVout/dt. 

Setting them equal gives 

 dVout/dt = -Vin/RC, 

so Vout = -(1/RC)Vindt. 

What’s the difference between V+ and V-? 

 That’s enough circuits for today, but to design op amp circuits, we have to know the difference 

between V+ and V-.  If we reverse them, the circuit won’t work!  Let’s glance inside the op amp and 

pretend that there’s a smiley stick figure who monitors the inputs and controls the output. 

 

How does Stick Figure decide how to set Vout?  Stick Figure follows these rules: 

 Condition 1.  If V+ > V-, Vout will increase. 

 Condition 2.  If V- > V+, Vout will decrease. 
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 Condition 3.  If V+  V-, Vout will stay how it is (the voltage Golden Rule is achieved!). 

 Let’s see how these rules apply to a correctly designed follower. 

 

Suppose the input and output voltages are initially 5 V.  Stick Figure sees that the circuit is in condition 3:  

the inputs are equal, so the output voltage shouldn’t change. 

 Now, suppose the input increases to 6 V.  The output voltage does not change instantaneously and 

is still 5 V.  Stick Figure sees that the circuit is in condition 1:  V+ = 6 V, which is greater than V- = 5 V.  

Therefore, Stick Figure causes the output to increase.  It increases to 5.1 V, but the op amp is still in 

condition 1.  The output increases to 5.5 V, but the op amp is still in condition 1.  The op amp output 

increases to 6 V, when finally the op amp is in conditions 3, and the output doesn’t need to change any 

more. 

 Next, let’s analyze an incorrectly designed follower, whose + and – are reversed: 

 

Once again, suppose that the input and output voltages are initially 5 V, so the circuit is in condition 3.  

Next, the input voltage increases to 6 V.  Stick Figure now sees that the op amp is in condition 2:  V- = 6 

V, which is greater than V+ = 5 V.  Now, poor Stick Figure (who really doesn’t know any better) has to 

decrease the op amp output, first to 4.9 V, then 4 V, then 0 V, then even lower.  But the op amp remains 

in condition 2 (and gets further and further from condition 3). 

 The op amp’s output can’t decrease forever.  To predict the voltage it reaches, we must discuss 

two additional pins in the op amp:  the supply voltages.  Here’s a pin diagram for a typical op amp: 
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(figure from http://www.ti.com/lit/ds/symlink/ua741.pdf) 

 In this diagram, IN- = V-, IN+ = V+, and OUT = Vout.  We must always apply voltages to VCC+ 

and VCC- to power the op amp.  Typically VCC+ and VCC- are +15 V and -15 V respectively, or 12 V, or, 

if you’re using two 9 V batteries, 9 V.  Vout is constrained by the supply voltages: VCC- < Vout < VCC+.    

 Just in case you’re curious, here’s one final detail:  Why do I keep saying V+  V- instead of V+ = 

V-?  If we want to be extremely precise, we can replace the voltage Golden Rule with the exact equation 

Vout = A(V+ - V-), where A is a huge number (~ten million) called open-circuit gain.  Apply this to the 

follower: 

 

Vout = A(V+ - V-) = A(Vin – Vout).  Solving for Vout:  Vout = VinA/(A + 1)  Vin, which is what the voltage 

Golden Rule gives us (much more quickly). 

 Look back to the R, L, and C diagrams at the beginning of the lecture.  What if I is negative?  Is 

this allowed?  Are the equations still true?  What if we don’t know the direction of I? 

Lecture 11:  An RC circuit and 3 ways to analyze it 

(Santiago Ch. 13 and 15) 

 Consider this simple circuit: 

http://www.ti.com/lit/ds/symlink/ua741.pdf
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I’m interested in a sinusoidal input vin(t), but I’m noncommittal about phase; for vin, I’m equally 

happy with Vinsin(t), Vincos(t), or Vinsin(t+), where  is an arbitrary constant.  (I’m using 

lower-case letters for instantaneous voltages and currents and upper-case letters for 

constant amplitudes.)  

 We can reasonably expect vout to also be sinusoidal, but the output amplitude (Vout) will 

be smaller than the input amplitude (Vin).  Also, there will be a phase shift between the input and 

output:  the peaks of the input will not occur at the same time as the peaks of the output. 

 Our goal is to determine the ratio of output amplitude to input amplitude, Vout/Vin, and as 

a secondary interest, to determine the phase shift between input and output.  We will solve this 

problem four ways!  (Three ways today, and a fourth way in Lecture 13.) 

 

Method 1.  Write and solve the differential equation 

 Evaluation of this method:  It’s often (but not always) the most laborious method.  The 

integrator circuit is an example of a circuit whose differential equation is so simple that this 

method may be the best. 

 Let vin(t) = Vinsin(t). 

 From the circuit diagram, we see that the same current i flows through both R and C.  

(We’re assuming no “load” is connected to the output, except possibly a follower circuit, which 

draws no current.) 

 The voltage across the capacitor is 

 vout = q/C.   

The voltage across the resistor is iR.  Therefore the voltage across the series combination is q/C + 

iR, and this is vin: 

 Vinsin(t) = q/C + iR, 

where i = dq/dt, so 

 Vinsin(t) = q/C + R dq/dt. 

 Here’s our differential equation, in q.  Let’s guess a solution.  Since the input voltage is 

sinusoidal, it’s reasonable to expect that i and q are also sinusoidal, though we don’t know the 

amplitude and phase.  So let’s guess 

 q = Qsin(t+), 

where Q and  are unknown and need to be determined, by plugging this expression into the 

differential equation: 

 Vinsin(t) = Qsin(t+)/C + RQcos(t+) 

 We will simplify this using the trig identity sin + cos = (2 + 2)1/2sin(+tan-1(/)): 

 Vinsin(t) = Q(1/C2 + 2R2)1/2sin(t++tan-1(RC)). 

We see that  
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 Q = Vin/(1/C2 + 2R2)1/2 

and 

  = -tan-1(RC), 

so 

 q = Vin/(1/C2 + 2R2)1/2 sin(t-tan-1(RC)) 

and 

 vout = q/C = Vin/(1 + 2R2C2)1/2 sin(t-tan-1(RC)). 

Therefore the output amplitude 

 Vout = Vin/(1 + 2R2C2)1/2, 

and the output amplitude is smaller than the input amplitude by a factor of 

 Vout/Vin = 1/(1 + 2R2C2)1/2. 

The phase shift is -tan-1(RC). 

 

Method 2.  Phasor diagram 

 Evaluation of this method:  This immediately gives Vout/Vin and the phase shift, but it 

works only for simple series circuits (such as the one we’re analyzing right now). 

 Draw an arrow to the right and call its length IR.  Draw an arrow downward and call 

its length I/C.  We immediately see that the “vector sum” of these arrows is I(1/2C2 + R2)1/2.  

This vector sum the amplitude of the voltage across the series combination, which is Vin.  The 

downward arrow is the amplitude of the voltage across the capacitor, which is Vout.  So we 

immediately obtain  

 Vout/Vin = (1/C)/(1/2C2 + R2)1/2 = 1/(1 + 2R2C2)1/2. 

 Since we often just want this ratio, the current amplitude I is often omitted from the three 

arrows in the phasor diagram. 

 We immediately read the (magnitude of the) phase shift from the phasor diagram as well. 

 

       IR = VR = amplitude of voltage across R 

 

  

          tan-1(RC) 

 

                     

 

 

 

             

I/C  = VC          I(1/2C2 + R2)1/2 = Vin   

= amplitude of voltage         = amplitude of voltage 

   across C               across series combination 

 

 You might think of the phasor diagram as a visual mnemonic for the results we obtained 

from Method 1.  If you want to take it a step further, imagine the whole diagram rotating 

counterclockwise with frequency .  The projections of the arrows onto either a horizontal or 

vertical axis (your choice) give instantaneous voltages.  See 

http://www.animations.physics.unsw.edu.au/jw/AC.html. 
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 We can use the phasor diagram without really understanding why it works.  But let’s try 

to understand it.   

 We know that IR is the amplitude of the voltage across a resistor.  But why is I/C the 

amplitude of the voltage across the capacitor?  If 

 q = Qsin(t+),  

then 

 i = dq/dt = Qcos(t+),  

thus current amplitude 

 I = Q. 

So 

 VC = Q/C (the basic capacitor equation)  

 VC = I/C. 

 Why is I(1/2C2 + R2)1/2 equal to the input amplitude?  In Method 1, we found 

 Q = Vin/(1/C2 + 2R2)1/2, 

so 

 Vin = Q(1/C2 + 2R2)1/2 = I(1/2C2 + R2)1/2, 

simply by substituting Q = I/. 

 

Method 3.  Complex impedances (Ohm’s law generalized) 

 Evaluation of this method:  This is often the best method for circuits of any complexity, 

but only for sinusoidal (or at least periodic) input. 

 Write the complex impedance for each R, C, or L in the circuit: 

o The impedance of a resistor is R. 

o The impedance of a capacitor is 1/jC. ( 1j ) 

o The impedance of an inductor is jL. 

 Ohm’s law generalized:  If a current i flows through, 

o the voltage across a resistor is iR. 

o the voltage across a capacitor is i/jC. 

o the voltage across an inductor is ijL. 

 All impedances combine like resistors:  a series combination is Z1 + Z2, a parallel 

combination is 1/(1/Z1 + 1/Z2). 

 Use Ohm’s law (and maybe Kirchhoff’s current law) to find vout/vin.  This will be a 

complex number (unless you have no C or L in your circuit). 

 Find the magnitude of this complex number: 

*
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 This magnitude is the amplitude ratio we want: 
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 Let’s apply this procedure to our simple RC circuit. 
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This is really just a voltage divider since we get to treat 1/jC as a resistor.  We could skip to the result, 

but let’s derive it. 

 The same current i flows through R and 1/jC.  Applying Ohm’s law to 1/jC, we see 

 vout = i/jC. 

Applying Ohm’s law to the series combination, we see 

 vin = i(R + 1/jC) 

Combining the equations, we obtain 

 vout/vin = 1/(jRC + 1). 

This is a complex number, and we want to know its magnitude, so we multiply by its complex conjugate 

and take the square root: 

 {[1/(jRC + 1)][1/(-jRC + 1)]}1/2 = 1/(2R2C2 + 1)1/2. 

This is Vout/Vin, just as we found in the two previous methods. 

 We will also use a fourth method (Laplace transforms) to obtain this result.  But first, we’ll 

practice using Method 3 with other circuits. 

 The rules for series and parallel resistor combinations are the opposite of the rules for series and 

parallel combinations of capacitors.  So why do all complex impedance combine like resistors? 

Lecture 12:  Complex impedances and frequency response 

 Let’s use the complex-impedance method to determine Vout/Vin for other circuits.  This ratio is so 

useful that we have two names for it.  We call it G, for “gain.”  Since G depends on frequency, we also 

call it “frequency response.” 

 Let’s determine the gain, G = Vout/Vin, for an integrator circuit. 
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Applying Ohm’s law to the resistor: 

 i = (vin – 0)/R. 

Applying Ohm’s law to the capacitor: 

 i = (0 – vout)/(1/jC) = -jCvout. 

Combining these equations: 

 vout/vin = -1/jRC.   

(We could have arrived here immediately by recognizing the circuit as an inverting amplifier with R1 = R 

and R2 = 1/jC.) 

The magnitude of vout/vin is  

 G = Vout/Vin = 1/RC. 

 So the gain is inversely proportional to frequency.  We can understand this conceptually.  The 

greater the frequency, the less time the capacitor has to charge; the input voltage reverses before the 

capacitor accumulates much charge.  Since the output voltage is the capacitor’s voltage, the output 

voltage is small when the input frequency is high. 

 Conversely, when the input frequency is low, the capacitor has a lot of time to charge.  And we 

see that when frequency is 0 (constant, or DC, input voltage), the gain is infinite:  the capacitor keeps 

charging forever (well, only until the op amp output reaches a supply voltage). 

 Now, this is a problem for any input voltage:  any input voltage is bound to have a DC 

“component.”  Even if the input is sinusoidal, and nearly centered on 0 V, in reality, it’s probably not 

perfectly centered on 0 V, so the actual input is a sinusoid plus a small constant.  This small constant 

causes the capacitor to charge more than discharge over each cycle, until finally the op amp output 

reaches a supply voltage, which we want to avoid.   

 How can we prevent this problem?  In other words, how can we eliminate the infinite gain at  = 

0?  By putting a resistor in parallel with the capacitor: 
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The new resistor, Rf, is in parallel with the capacitor.  We can form the parallel combination: 

  

The circuit is now an inverting amplifier with R1 = R and R2 = 1/(1/Rf + jC), so 

 vout/vin = -1/(R/Rf + jRC) 

and the magnitude of this is 

 G = Vout/Vin = 1/(R2/Rf
2 + 2R2C2)1/2 

Let’s plot the gain as a function of frequency (the frequency response): 
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We see that for low , G  Rf/R.  How could we have predicted this without writing anything down?  If 

we look at the circuit, we see that the capacitor’s impedance is huge at low .  Rf dominates the parallel 

combination; the capacitor is negligible, so the circuit looks like an inverting amplifier at low . 

 As high , G  1/RC, which is the gain for an integrator.  We could have predicted this by 

recognizing that the impedance of the capacitor is very small at high ; the capacitor dominates, Rf has 

negligible effect, and the circuit looks like an integrator. 

 Now let’s try a fancier circuit, called a Sallen-Key low-pass filter. 

 

We’re going to have a lot of unknowns, but we’ll have enough equations to eliminate all the unknowns 

except vout and vin. 

 First, let’s use Ohm’s law (generalized) to find each of the three currents: 

 i1 = (vin - vA)/R1 

 i2 = (vA – vout)jC2 

 i3 = voutjC1 

Kirchhoff’s current law at point A lets us write 

 i1 = i2 + i3 

 (vin - vA)/R1 = (vA – vout)jC2 + voutjC1 

How do we eliminate vA?  We haven’t yet used the fact that i3 flows through R2 as well as C1: 

 (vA – vout)/R2 = voutjC1, 

so  

 vA = vout(jR2C1 + 1). 

Plug this into the equation that came from Kirchhoff’s current law: 

 [vin - vout(jR2C1 + 1)]/R1 = (jR2C1vout)jC2 + voutjC1 

Nothing’s left but algebra. 

A 
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 vin/R1 - vout(jR2C1 + 1)/R1 = -2R2C1C2vout + voutjC1 

So 

 vout/vin = 1/(jR2C1 + 1 + jC1R1 - 2R1R2C1C2) 

  = 1/[1 - 2R1R2C1C2 + jC1(R1+R2)]. 

Multiply this by its complex conjugate and take the square root to find the magnitude: 

 G = 1/[(1 - 2R1R2C1C2)2 + 2C1
2(R1+R2)2]1/2.  

If we sketch this function, we obtain 

 

We see that G = 1 at low frequency and G = 0 at high frequency.  This is called a low-pass filter:  low 

input frequencies pass through, but high frequencies are blocked.  At what frequency does the transition 

occur, from “pass” to “block”?  We define this transitional frequency as the frequency where G = 1/21/2.  

This frequency is called 3dB because a gain of 1/21/2 is -3 decibels:  dB = 20logG. 

 Let’s think about how to choose resistances and capacitances for a desired 3dB.  For simplicity, 

let’s choose R1 = R2 = R and C1 = C2 = C.  Now  

 G = 1/[(1 - 2R2C2)2 + 42C2R2]1/2 

       =1/(1 + 2R2C2) 

So 

  = (G – 1)1/2/RC 

and 

 3dB = (2-1/2 – 1)1/2/RC = 0.644/RC 

 Although angular frequency  [rad/s] is mathematically convenient, in the lab we set and 

measure frequency f [Hz], so f = /2, and in this case, 
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 f3dB = 0.1/RC 

 To set our cut-off frequency to 1 kHz, we could choose R = 10 k and C = 0.01 F. 

 The integrator is also a low-pass filter.  Why is the Sallen-Key low-pass filter better? 

Lecture 13.  Laplace transforms 

(Santiago Ch. 16) 

 The Laplace transform is a method for solving differential equations.  It transforms a differential 

equation into an algebraic equation.  This diagram compares the Laplace transform with the direct method 

of solving a differential equation: 

Laplace transform:  direct 

calculation or table or website 

   

  direct solution of dif. eq.     solve algebraic eq. 

 

Inverse Laplace transform: 

table or wolframalpha.com 

 

 The definition of a Laplace transform is 

   



0

)()()( dtetfsFtfL st  

There’s no new math in this definition; the Laplace transform is just an integral.  The original variable t is 

integrated away.  A new variable s appears.  s exists only in intermediate calculations, kind of like the u 

in u substitution.  Our final answer won’t have s in it; the inverse Laplace transform gets rid of s and 

restores t.  In this course, our method for finding inverse Laplace transforms will be to use a table or an 

online tool (wolframalpha.com).  Analogously, we use calculators to determine cos39; we don’t do it by 

hand.  (There are lots of techniques for manipulating Laplace transforms until they’re in a form found in a 

table.  But I think it’s more likely that you’ll have internet access than a hard copy of a table of Laplace 

transforms.  And since wolframalpha.com accepts Laplace transforms in any form, we won’t spend time 

learning how to massage Laplace transforms into the form found in a table.)  

 Let’s use Laplace transforms to analyze the RC circuit to which we already applied three 

methods.  So this is  

Method 4:  Laplace transforms 

 Evaluation of this method:  This method is not ideal for sinusoidal inputs.  However, this method 

is useful for most non-sinusoidal inputs, especially voltage “spikes” (infinite voltages of infinitesimal 

duration:  impulse functions). 

Differential equation in t 

Final solution:  vout(t) 

Algebraic equation in s 

Intermediate solution:  

)(sV out  
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 We’re applying Laplace transforms to the same RC circuit to make sure we get the same result 

we got three other ways: 

 

 Since we want to solve the same problem we solved before, the input voltage has to be sinusoidal.  

But remember, I was noncommittal about the phase of the input voltage, so this time, let vin(t) = 

Vincos(t-), where  = tan-1(1/RC).  Let’s further assume that the capacitor is initially uncharged, so 

vout(0) = 0. 

  The output voltage plus the voltage across the resistor is the input voltage: 

 Vincos(t-) = iR + vout 

 I want to write i in terms of vout.  vout is the voltage across the capacitor, q/C, so  

 dvout/dt = i/C.  So  

 Vincos(t-) = RC(dvout/dt) + vout 

Now we have a differential equation that we want to solve, so we’ll take the Laplace transform of both 

sides of this equation.  The fast way to do this is to use a table of Laplace transforms.  Here’s a short table 

of the transforms that we need: 

 f(t)    )(sF  

 cos(t-)   (sin + scos)/(s2 + 2) 

 df/dt    )0()( fsFs   

 Since the Laplace transform is an integral, the usual linearity properties apply:  

   )()()()( sGsFtgtfL   . 

 Now we’re ready to take the Laplace transform of  

 Vincos(t-) = RC(dvout/dt) + vout: 

 Vin(sin + scos)/(s2 + 2) = RCs )(sV out + )(sV out , 

where I used vout(0) = 0.  I can simplify this by evaluating sin and cos.  Since  = tan-1(1/RC) from the 

problem statement, I can draw the right triangle 
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           (2R2C2+1)1/2           1 

         

    RC 

So I see that sin = 1/(2R2C2+1)1/2 and cos = RC/(2R2C2+1)1/2, and 

 [Vin/(2R2C2+1)1/2](1 + sRC)/(s2 + 2) = RCs )(sV out + )(sV out , 

where the term in brackets is just a constant (no s). 

 The next step is to solve for )(sV out : 

 )(sV out = [Vin/(2R2C2+1)1/2]/(s2 + 2). 

The final step is to take the inverse Laplace transform of this.  I see in a table that 

 f(t)    )(sF  

 sin(t)    /(s2 + 2) 

So the final result is 

 vout(t) = [Vin/(2R2C2+1)1/2]sin(t). 

As before, the output amplitude is found to be a factor of 1/(2R2C2+1)1/2 times the input amplitude. 

 Now, let’s practice using the definition of the Laplace transform just to demystify it; it really is 

just an integral.  Let’s return to our differential equation 

 Vincos(t-) = RC(dvout/dt) + vout 

and take the Laplace transform the long way, by using   



0

)()()( dtetfsFtfL st .  Multiplying by e-st 

and integrating both sides: 

 


















00

)cos( dtev
dt

dv
RCdtetV st

out

outst

in   

 










 
000

)cos( dtevdte
dt

dv
RCdtetV st

out

stoutst

in   

The first integral can be evaluated with the help of an online integral calculator.  The final integral is the 

definition of )(sV out . 
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 

)(
cossin

0

22
sVdte

dt

dv
RC

s

s
V out

stout

in 











. 

The remaining integral requires some work.  We need to use integration by parts: 

   






0

0

0

vduuvudv  

where 

 u = e-st, so du = -se-stdt 

and 

 dv = dvout, so v = vout: 

  

 

)(

)0(
0

00

0

sVs

dtevsv

dtsevvedte
dt

dv

out

st

outout

st

outout

ststout



















 

So we’ve proven that the Laplace transform of our differential equation is 

 Vin(sin + scos)/(s2 + 2) = RCs )(sV out + )(sV out . 

 How would the Laplace transform differ if the capacitor had an initial charge? 

Lecture 14.  Transfer functions 

(Santiago Ch. 11) 

 Let’s again consider the same circuit, though with a non-sinusoidal input: 

 

Even without specifying vin(t), we see that 

 vin(t) = iR + vout 

where the capacitor’s charge q = Cvout, so 
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 i = C(dvout/dt), 

so 

 vin(t) = RC(dvout/dt) + vout. 

 We can take the Laplace transform of this even though we haven’t specified vin(t).  Assuming the 

capacitor is initially uncharged, vout(0) = 0, and 

 )()()( sVsVRCssV outoutin  : 

Now define the transfer function 

 
)(

)(
)(

sV

sV
sT

in

out
 .  

The transfer function is defined for initial conditions of zero:  capacitors are initially uncharged (and 

there’s no initial current through any inductors).   

 The transfer function for our RC circuit is  

 
sRC

sT



1

1
)(  

 For any chosen vin(t), we can 

 find the Laplace transform )(sV in  of vin(t) 

 find )()()( sVsTsV inout   

 find vout(t), the inverse Laplace transform of )(sV out  

Example:  Step function 

 In the RC circuit we’ve been studying, suppose vin(t) = VAu(t), where u(t) = 0 for t < 0, and u(t) = 

1 for t > 0.  u(t) is called a step function.  Determine vout(t). 

Solution 

 First we use the definition of the Laplace transform to find )(sV in : 

 
s

V
dteVdtetvsV Ast

A

st

inin  








00

)()(  

 Next we multiply by the transfer function (which we already found) to obtain 

)()()( sVsTsV inout  : 

 
)1(

)(
sRCs

V
sV A

out


 . 
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 Finally, take the inverse Laplace transform of this, using a table or wolframalpha.com: 

 vout(t) = VA(1 – e-t/RC) 

 This is the familiar RC charge curve:  the voltage across the capacitor asymptotically approaches 

VA as the capacitor charges up. 

Example:  Impulse function (voltage spike) 

 Considering the same circuit, suppose vin(t) = A(t), where (t) is the impulse function (Dirac 

delta function).  Roughly speaking, (0) = , and (t) = 0 for all other t.  The useful property of the 

impulse function is the sifting property:  )0()()(
0

fdtttf 


 .  Determine vout(t). 

Solution 

 First we use the definition of the Laplace transform to find )(sV in : 

 AdtetAdtetvsV stst

inin  








00

)()()(   

 Next we multiply by the transfer function (which we already found) to obtain 

)()()( sVsTsV inout  : 

 
)1(

)(
sRC

A
sV out


 . 

 Finally, take the inverse Laplace transform of this, using a table or wolframalpha.com: 

 vout(t) = Ae-t/RC/RC 

Example:  RL circuit 

 Assuming initial current i(0) = 0, determine vout(t) if vin(t) = Au(t) and if vin(t) = Atu(t). 

 

Solution 

 First let’s find the transfer function, by finding the equation relating input and output.  The input 

voltage is the output voltage plus the voltage across the resistor: 

 vin(t) = iR + vout(t), 
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where 

 vout(t) = L(di/dt), 

so 

 

t

out dttv
L

ti
0

')'(
1

)( , assuming i(0) = 0. 

The equation relating input and output voltages becomes 

 )(')'()(
0

tvdttv
L

R
tv out

t

outin   . 

Now we can take the Laplace transform, using the fact that L[f(t’)dt’] = ssF /)( : 

 )()()( sVsV
sL

R
sV outoutin  . 

The transfer function is 

 
LsRV

V
sT

in

out

/1

1
)(


 . 

But it’s even more convenient to solve for outV : 

 )(
/

)(
/1

1
)( sV

LRs

s
sV

LsR
sV ininout





  

 If vin(t) = Au(t), we already know that its Laplace transform is A/s.  Plug this into the equation 

above: 

 
LRs

A
sV out

/
)(


 . 

The inverse Laplace transform (from a table or website) is 

 vout(t) = Ae-Rt/L. 

 Now we consider the other input, vin(t) = Atu(t).  The Laplace transform of this (from a table, 

website, or direct calculation) is A/s2.  In this case, 

 
)/(

)(
LRss

A
sV out


 . 

The inverse Laplace transform of this is 

  LRt

out e
R

AL
tv /1)(  . 

How do things change if the initial current is not 0? 



52 
 

Lecture 15.  A shortcut to the transfer function 

(Santiago Ch. 18) 

 We’ve seen that we can find the transfer function for any circuit if we can write the differential or 

integral equation relating input and output voltages.  There’s a shortcut to the transfer function that’s 

valid whenever initial conditions are zero (no initial charge in capacitors, no initial current in 

inductors).  Consider once again the RC circuit that we’ve analyzed four ways:   

 

 We’ve seen that the method of complex impedances allows us to obtain 

 vout/vin = 1/(jRC + 1). 

We’ve also seen that the transfer function is 

 
sRC

sT



1

1
)(  

We see that they’re the same, if we make the substitution s = j.  In fact, this always works:  To obtain 

the transfer function, obtain vout/vin from Ohm’s law generalized, replacing j with s.  In other words, use 

1/sC as the impedance of a capacitor, and use sL as the impedance of an inductor. 

Example 

 

Initial charges are 0.  Determine vout(t) if vin(t) = Au(t). 

Solution 

 First, let’s form the parallel combinations: 
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Now we see that this is a voltage divider, so we can immediately (or gradually) obtain 

 vout/vin = [1/(1/R2 +sC2)]/[1/(1/R1 +sC1) + 1/(1/R2 +sC2) 

 = 1/[(1/R2 +sC2)/(1/R1 +sC1) + 1] 

 (1/R1 +sC1)/(1/R1 +sC1 + 1/R2 +sC2) 

So this is the transfer function: 

 )(sT = (1/R1 +sC1)/(1/R1 +sC1 + 1/R2 +sC2). 

We multiply by )(sV in =A/s to obtain 

 )(sV out  A(1/R1 +sC1)/[s(1/R1 +sC1 + 1/R2 +sC2)]. 

The inverse Laplace transform of this is messy but can be obtained from wolfram alpha: 

  )/()/1/1(

21

2)/()/1/1(

21

1 21212121 1
)(

)(
CCRRtCCRRt

out e
RR

AR
e

CC

AC
tv








  

Example 

 In the following figure, initial current i1 (down) is 1 A and i2 (to the right) is 1 A. Determine 

vout(t) if vin(t) = (2 V)u(t). 
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Solution 

 We can’t use the shortcut to the transfer function because the initial currents are nonzero.  So we 

have to find the differential equation the long way. 

 Kirchhoff’s current rule: 

 i = i1 + i2 

 Kirchhoff’s voltage rule on the right: 

 di1/dt  - di2/dt – i2 = 0, 

using the fact that i2 flows through the resistor. 

 Kirchhoff’s voltage rule on the implied loop on the left: 

 vin – i – di1/dt = 0 

Take the Laplace transform of all three of these equations: 

 21 III   

   0)0()0( 22211  IiIsiIs  

   0)0(11  iIsIV in  

The initial currents are both 1 A, so the three equations become 

 21 III   

 0221  IIsIs  

   011  IsIV in  
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We have three equations in three unknowns.  Ultimately we want i2 because vout = i2(1 ).  Plug the first 

equation into the third: 

   01121  IsIIV in  

Solve for 1I  from the middle equation: 

 ssII /)1(21   

Plug this into   01121  IsIIV in : 

   01)1(/)1( 222  sIIssIV in  

Solve for 2I : 

 
3/1

1

11/11

1
2











ss

V

ss

V
I

inin
 

Since vin(t) = (2 V)u(t), inV =2/s, and 

 
ss

s

ss

s
I

31

2

3/1

/21
2

2









  

Using wolframalpha.com to do the inverse Laplace transform, 

 i2(t) =  

which is numerically the same as vout(t) = i2(t)(1 ).  Doing the arithmetic, 

 vout(t) = (0.774 V)e-2.618t + (0.276 V)e-0.382t 

where t is in seconds. 

 Why was the Laplace transfer of Kirchhoff’s current rule so simple?  Why was there no explicit s 

in the equation? 

Lecture 16.  Chaos in electronics 

 The third problem in Problem Set 16 is so complicated that I want to spend this whole lecture on 

it.  The problem is to simulate V1 vs. V2 in this chaotic circuit described in “Simple Autonomous Chaotic 

Circuits” by Piper and Sprott: 
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 First we need to understand that the voltage Golden Rule doesn’t apply to the upper op amp.  

Suppose V2 is negative, so V+ > V-, and the op amp raises its output voltage.  The left end of RC is held at 

ground (by the lower op amp).  So the increase in the upper op amp’s output doesn’t lower V2.  In fact, 

increasing I3 probably increases I5, which actually lowers V2, moving the op amp further from satisfying 

the Golden Rule. 

 Do you want to convince yourself that the voltage Golden Rule does apply to the lower op amp?  

Suppose V- is negative, so V+ > V-, and the op amp raises its output voltage.  This happens very quickly, 

and the charge on the capacitor doesn’t have time to change much.  Therefore, with the voltage across the 

capacitor staying roughly constant, an increase in the op amp output must raise V- until V-  V+ = 0. 

 How can we even begin to analyze this circuit?  First I use Kirchhoff’s current rule, and then I 

write all currents in terms of voltages to eliminate currents from the equations: 

 Kirchhoff’s Current Law: 

 I3 = I1 + I5         (A) 

 I5 = I2 + I4         (B) 

 Let’s write each current in terms of voltages: 

 Q1 = C1(0 – V1), so  

 I1 = -C1 dV1/dt.         (1) 

 Q2 = C2(V2 - 0), so  

 I2 = C2 dV2/dt.         (2) 

 I3 = V3/RC.         (3) 
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 V2 – V1 = L dI4/dt, so  

 dI4/dt = (V2 – V1)/L.        (4) 

 I5 = -V2/R.         (5) 

 The final goal, algebraically, is to find an equation containing a single voltage and its time 

derivatives; this is the differential equation we have to solve numerically (there are no exact analytical 

solutions).  Which voltage should we choose?  We should choose V2 because V3 can be written only in 

terms of V2.  Specifically, the upper op amp doesn’t obey the voltage Golden Rule, so when V+ > V-, its 

output increases as much as it can (approximately to the positive supply voltage, which is 9 V if we use 9 

V batteries), and when V- > V+, its output decreases as much as it can (approximately to -9 V).  And since 

V+ = 0 and V- = V2, V3 = 9 V when V2 < 0, and V3 = -9 V when V2 > 0.  More concisely, 

 V3 = -k sgn(V2), 

where k  9 V and sgn(V2) = 1 when V2 > 0, and sgn(V2) = -1 when V2 < 0. 

 Let’s plug Eqs. (1)-(5) into Eqs. (A) and (B) to eliminate currents.  Actually, we need to 

differentiate Eq. (B) to use Eq. (4). 

 Plug (1), (3), and (5) into (A): 

 V3/RC = -C1 dV1/dt – V2/R.       (6) 

 Plug (2), (4), and (5) into d(B)/dt:       

 -(dV2/dt)/R = C2 d2V2/dt2 + (V2 – V1)/L      (7) 

Next I want to combine these equations to eliminate V1.  From Eq. (6), 

 dV1/dt = -V2/RC1 – V3/RCC1. 

Plug this into d(7)/dt: 

 -(d2V2/dt2)/R = C2 d3V2/dt3 + (dV2/dt)/L + V2/LRC1 – V3/LRCC1 

Finally, I can use V3 = -k sgn(V2) to obtain the final result: 

 d3V2/dt3 = -(d2V2/dt2)/RC2 - (dV2/dt)/LC2 + V2/LRC1C2 – k sgnV2/LRCC1C2 

 This equation has no exact (analytical) solution, so Laplace transforms aren’t helpful.  Instead, we 

have to use an approximation (numerical) technique to replace the derivatives with finite differences.  The 

simplest technique is the Euler technique: 

 V2(t+t)  V2(t) + (dV2/dt)t 

Similarly, 
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 (dV2/dt)|t+t  (dV2/dt)|t + (d2V2/dt2)t 

and 

 (dV2
2/dt2)|t+t  (dV2

2/dt2)|t + (d3V2/dt3)t 

 d3V2/dt3 is what we just derived!  So if we know initial values of V2, dV2/dt, and d2V2/dt2, Euler’s 

method allows us to step forward in time: 

 Calculate d3V2/dt3 from the equation we derived, using current values of V2, dV2/dt, and d2V2/dt2. 

 Determine the next value of d2V2/dt2, using (dV2
2/dt2)|t+t  (dV2

2/dt2)|t + (d3V2/dt3)t. 

 Determine the next value of dV2/dt, using (dV2/dt)|t+t  (dV2/dt)|t + (d2V2/dt2)t. 

 Determine the next value of V2, using V2(t+t)  V2(t) + (dV2/dt)t. 

 These “next values” are now our current values.  Return to the first step and iterate as long as 

desired. 

How do you know how small t has to be?  I explored this empirically by reducing t until the result 

basically stabilized.   

 

 Looking back at the circuit diagram, can you explain where I1 and I4 go?  Why didn’t I apply 

Kirchhoff’s current rule to the junction at V1?  
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UNIT 3:  DESIGN OF SOLAR CELLS:  SEMICONDUCTOR PHYSICS AND FURTHER 

APPLICATIONS OF FOURIER SERIES, LAPLACE TRANSFORMS, FINITE DIFFERENCE 

APPROXIMATIONS, AND ARDUINO! 

 

 We’ll find that the skills we’ve learned have prepared us well for mathematical, computational, 

and experimental investigation of simple semiconductor structures. 

Lecture 17:  Semiconductors 

(Honsberg and Bowden, Ch. 3.1) 

 Silicon is a semiconductor:  it’s an insulator at low temperatures and a conductor at high 

temperatures. 

 It has four valence electrons in its outer shell: 

  

    Si        

  

Actually, the electrons are arranged on the corners of a tetrahedron; they’re not all in the same plane, but 

we draw it that way. 

 So, each silicon atom likes to bond with four others: 
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 Si  Si  Si 

           

           

    Si            Si             Si  

         

           

 Si  Si  Si    

 At a temperature of 0 K, all the valence electrons are stuck in the valence bands; no current can 

flow. 

 As temperature increases, some electrons acquire enough energy to escape the bonds.  These free 

electrons leave behind “holes,” which behave as positive charges that can more around: 

           

           

     Si            Si       o      Si  

          free (conduction) electron which escaped, leaving hole 

              

 Free electrons can conduct electricity.  These electrons are said to be in the “conduction band.”  

The electrons that are stuck in bonds are in the valence band.  Free electrons have more energy than the 

electrons in bonds, so the conduction band is at higher energies than the valence band.  This is represented 

in a band diagram:  
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           conduction band (free electrons):  mostly empty 

  bandgap (no allowed states)       bandgap energy EG 

 

 oo   valence band (electrons in bonds):  mostly full 

  

energy 

 How many free electrons are there in pure silicon?  This is the intrinsic carrier concentration, 

ni.  ni increases with temperature.  At room temperature, ni = 8.3  109 cm-3.  (This seems like a lot, but 

the number of silicon atoms per cubic centimeter is larger by a factor of almost 1013.  So an extremely 

small fraction of atoms contributes free electrons to the conduction band.)   

 Semiconductors are useful because we can precisely engineer the concentration of free electrons 

and holes by adding small amounts of another element.  This process is called doping. 

 In n-type doping, we add an element like phosphorous that has more than four valence electrons.  

Phosphorous has five valence electrons: 

           

           

    Si            P              Si  

         

           

    The fifth electron is free! 

 Phosphorous is this case is called a donor because it donates a free electron.  The concentration 

of donors is called ND.  Except at extremely low temperatures, each donor atom donates one free electron.  

Assuming ND >> ni, the free electron concentration n0 equals the donor concentration:  n0 = ND.  In n-type 

silicon, electrons are called majority carriers, and holes are called minority carriers. 

 In p-type doping, we add an element like boron that has fewer than four valence electrons.  

Boron has three valence electrons: 
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           

           

    Si            B        o      Si  

         

           

    hole (because boron has only three valence electrons) 

 Boron is this case is called an acceptor because it can accept an electron from another atom, 

effectively moving a hole to the other atom.  The concentration of acceptors is called NA.  Except at 

extremely low temperatures, each acceptor atom produces one hole. Assuming NA >> ni, the hole 

concentration p0 equals the acceptor concentration:  p0 = NA.  In p-type silicon, holes are called majority 

carriers, and electrons are called minority carriers. 

 If we know the doping level (ND or NA), we know the concentration of majority carriers.  But 

how do we determine the concentration of minority carriers?  In turns out, in equilibrium it’s always true 

that 

 n0p0 = ni
2 

This is exactly analogous to a fact you may have learned in chemistry: [H30+][0H-] = (10-7 M)2. 

 So for an n-type semiconductor: 

 n0 = ND and p0 = ni
2/ ND 

 And for a p-type seminconductor:  

 p0 = NA and n0 = ni
2/ NA

 

 What do you suppose happens if a material is doped with both donors and acceptors, but there are 

far more of one than the other? 

Lecture 18:  Generation, recombination, and diffusion 

(Honsberg and Bowden, Ch. 3.2 and 3.3) 

 If a semiconductor absorbs a photon with larger energy than the bandgap energy, then the photon 

energy can be transferred to an electron in the valence band, boosting it to the conduction band: 
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             conduction band  

   absorbed photon energy       bandgap energy EG 

 

 o     valence band  

  

A hole is left behind in the valence band, so the absorption of a photon creates an electron-hole pair.  

The concentrations of electrons and holes increase above equilibrium level: 

 electron concentration n = n0 + n 

 hole concentration p = p0 + p 

where (for our purposes) n = p, and this is called the excess carrier concentration. 

 At low levels of illumination, such that the excess carrier concentration is less than the dopant 

concentration, only the minority carrier concentration increases significantly: 

 n-type:  n = ND + n  ND, p = p0 + p 

 p-type:  p = NA + p  NA, n = n0 + n 

 Consider the photon flux N0 [cm-2s-1] of light shining on the surface of silicon.  As we look 

deeper into the silicon, the photon flux decreases because some of the photons have already been 

absorbed.  The photon flux decreases with depth according to 

 N(x) = N0e-x, 

where  is called the absorption coefficient.   depends strongly on wavelength: 

 short wavelengths (blue light) have large  and are absorbed near the surface 

    long wavelengths (red light) have small  and are partially absorbed throughout 

 These facts are very significant in the design of solar cells, which are intended to absorb all 

wavelengths as efficiently as possible. 

 Now we’re ready to define the generation rate G [cm-3s-1]:  the rate at which electron-hole pairs 

are generated per unit volume.  For monochromatic illumination (a single wavelength and therefore a 

single ), the generation rate depends on depth according to 

 G(x) = N0e-x. 
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 Electron-hole pairs are created by the absorption of photon energy.  The electrons in the 

conduction band spontaneously drop back into the holes in the valence band.  This process is called 

recombination.  The recombination rate U [cm-3s-1] is proportional to excess carrier concentration n: 

 U = n/ = (excess carrier concentration)/(minority carrier lifetime) 

 The minority carrier lifetime is the average time between the generation of an electron-hole pair 

and its spontaneous recombination.   can be different for electrons and holes and so is often specified as 

n or p.  There are different recombination mechanisms that reduce lifetime.  In crystalline silicon solar 

cells, much recombination occurs through defects:  energy levels in the bandgap due to imperfections in 

the crystal structure.  A big challenge in solar cell engineering is to reduce defects as cheaply as possible, 

or to minimize their impact. 

 Free electrons and holes can move around.  In the absence of electric fields, they move around 

randomly.  Random motion causes a net movement of charge carriers from high concentration to low 

concentration.  This is called diffusion.  The diffusion length is the average distance an electron or hole 

travels between generation and recombination: 

 DL  , 

where D is the diffusivity [cm2/s].  Since D and  can be different for electrons and holes, L is also 

different for electrons and holes.  We specify the carrier type with subscripts: 

 nnn DL   and ppp DL   

 The movement of charge is current.  The diffusion current density [C cm-2 s-1] is given as 

 Jn = qDn(dn/dx) for electrons 

and 

 Jp = -qDp(dp/dx) for holes. 

Why is there a minus sign in one case but not the other?  Let’s first consider an electron concentration that 

increases in the positive x direction: 

               n 

            electrons  

                current 

      

      x  
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Electrons spontaneously diffuse from high concentration (high x) to low concentration (low x).  Since 

electrons have a negative charge, conventional current is in the opposite direction as the electrons’ 

motion.  Therefore, current is in the positive direction and should have a positive value.  Since dn/dx is 

positive, qDn(dn/dx) is positive as needed. 

 Now consider a hole concentration that increases in the positive x direction: 

               p 

            holes  

                current 

      

      x 

Holes spontaneously diffuse from high concentration (high x) to low concentration (low x).  Since holes 

have a positive charge, conventional current is in the same direction as the holes’ motion.  Therefore, 

current is in the negative direction and should have a negative value.  Since dp/dx is positive, qDp(dp/dx) 

is positive, which is why we need to add a minus sign for hole diffusion current. 

 Would you expect a very thin solar cell to have a better efficiency under red or blue illumination? 

Lecture 19:  The minority-carrier diffusion equation 

(Honsberg and Bowden, Ch. 3.4) 

 Now we’re ready to derive the minority-carrier diffusion equation.  The derivation is much like 

the derivation of the heat equation!  As before, we consider a very tiny volume of thickness x and cross-

section area A (perpendicular to the diagram):  

diffusion current in diffusion current out 

x           x+x 
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Let’s take the case of n-type silicon, so we’ll derive the minority-carrier diffusion equation for holes.  We 

simply have to keep track of the change in the number of holes in our volume: 

 Some holes diffuse through the left side at x.  They diffuse in if Jp(x) > 0. 

 Some holes diffuse through the right side at x+x.  They diffuse out if Jp(x+x) > 0. 

 Some holes may be generated within the volume (Ax) 

 Some holes may recombine within the volume (Ax). 

 We need an algebraic expression for each term. 

 Jp(x) is charge per unit area per unit time.  We want the number of holes per unit time flowing 

through the left edge, which is AJp(x)/q. 

 Similarly the number of holes flowing through the right edge is AJp(x+x)/q  

(A/q)[Jp(x)+(dJp/dx)x]. 

 The number of holes generated per unit time in the tiny volume is G times the volume:  GAx. 

 Similarly, the numbers of holes recombining per unit time is UAx = (p/p)Ax. 

So 

 rate of change in number of holes = rate of holes flowing in – rate of holes flowing out  

    + rate of generation of holes – rate of recombination of holes 

where the number of holes is the hole concentration times the volume: 

 (pAx)/t = AJp(x)/q - (A/q)[Jp(x)+(Jp/x)x] + GAx - (p/p)Ax 

Divide by Ax: 

 p/t =  -(Jp/x)/q + G – p/p 

Now use the expression for diffusion current, Jp = -qDp(p/x): 

 p/t =  Dp(2p/x2) + G – p/p 

This is the minority carrier diffusion equation for holes.  Since p = p0 + p, and p0 is a constant, we can 

write the diffusion equation in terms of p and its derivatives: 

 p/t = Dp(2p/x2) + G – p/p 

Similarly, for electrons in p-type material, 

 n/t = Dn(2n/x2) + G – n/n 

 Notice how similar this is to the heat equation!  G is analogous to internal energy generation.  The 

recombination term, however, has no counterpart in the heat equation. 
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Example 

 Consider p-type silicon with an acceptor concentration of 1016 cm-3.  The sample is illuminated 

with infrared light such that there is a uniform generation of 1010 cm-3s-1.   There is a uniform electron 

concentration of 106 cm-3.  What is the minority carrier lifetime?  At t = 0, the light is blocked, so the 

generation rate becomes 0.  Assume electron concentration remains uniform.  Find n(t). 

Solution 

 We start with the diffusion equation, where the derivatives are 0 because the electron 

concentration is uniform and also constant (while the light shines on the silicon): 

 0 = G – n/n 

In steady-state, generation equals recombination and n = n/G = (n – n0)/G  n/G = 10-4 s.  (I knew n >> 

n0 because n0 = ni
2/NA, and I approximated ni  1010 cm-3 to find n0  104 cm-3.) 

 At t = 0, the light is blocked, so G = 0 and n must change, so the time derivative is no longer 0: 

 dn/dt = –n/n 

The solution to this differential equation is n = Aexp(-t/n), where A is a constant determined by the 

initial condition:  n(0) = 106 cm-3 = A. 

Example 

 In thick p-type silicon in the dark, electrons arrive from the left at x = 0 such that n(0) = 1012 cm-3 

in steady-state.  Find n(x) and Jn(x) for positive x. 

Solution 

 We start with the minority carrier diffusion equation, with the time derivative zero because we’re 

in steady state.  Generation rate is also 0. 

 0 =  Dn(d2n/dx2) – n/n 

So n is proportional to its second derivative.  The solution is 

 n = Aekx + Be-kx, 

where A, B, and k are constants that need to be determined.  We can immediately set A = 0 because we 

don’t want infinite n at infinite x.  (We’re allowed to do this only because we’re told that the silicon is 

thick.  If the silicon were thin, we’d need a boundary condition for the surface.)  Plugging n = Be-kx into 

the differential equation yields  

 k2 = 1/(Dnn), so k = 1/Ln and n = Bexp(-x/Ln). 
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Now we just need to find B from the boundary condition, n(0) = n0 + n(0)  n(0) = 1012 cm-3 = B. 

 So n = (1012 cm-3)exp(-x/Ln) 

and 

 n = n0 + n = n0 + (1012 cm-3)exp(-x/Ln) 

 n0 and Ln are unknown, so we’ll just leave them as algebraic symbols. 

               n 

            electrons  

                current 

             n0 

      x  

Far from x = 0 where excess electrons are arriving, the electron concentration is n0.  Electrons recombine 

as they diffuse away from x = 0. 

 To find diffusion current, just plug n into the equation for Jn: 

 Jn = qDn(dn/dx) = -(qDn/Ln)(1012 cm-3)exp(-x/Ln) 

 Why does the magnitude of current decrease as x increases?  Where does the lost current “go”?  

Why must the current through a metal wire remain constant, and what makes a semiconductor different? 

Lecture 20:  Nonhomogeneous differential equations 

 The minority carrier diffusion equation has generation rate G in it.  G isn’t proportional to excess 

carrier concentration or its derivatives; mathematicians say that G is a nonhomogeneous term.  So far, we 

haven’t solved any nonhomogeneous differential equations.  But we’re about to. 

Example 

 Beginning at time t = 0, p-type silicon is illuminated with gradually dimming light such that 

there’s a uniform generation rate G(t) = G0e-bt, where G0 and b are constants.  Find n(t), assuming 

equilibrium at t < 0, and neglecting surface recombination.  (Uniform generation combined with 

negligible surface recombination means that n is uniform.) 

Solution:  Laplace transform! 

 Write the minority carrier diffusion equation, where the spatial derivative is zero because n is 

uniform: 

 dn/dt = G0e-bt – n/n 
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Take the Laplace transform: 

 N
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G
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Solve for N : 
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Take the inverse Laplace transform (using a table or Wolfram Alpha): 
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If you plot this, you find that it starts at 0 (because the silicon is in equilibrium before the light comes on).  

Then it rises (because generation exceeds recombination).  Then it decays to 0 (because generation decays 

to 0). 

 The Laplace transform made this problem easy, but some problems can be solved more easily by 

another method.  So let’s learn an alternative method. 

Alternative solution:  particular and complementary solutions 

 We can build the complete solution n as a sum of two functions:  the particular solution np 

and the complementary solution nc.  How do we find these two solutions?  Read on! 

 First we attempt to find a particular solution to the differential equation:  we stare at the 

nonhomogeneous term and try to guess a solution: 

 dn/dt = G0e-bt – n/n 

Since the nonhomogeneous term is proportional to e-bt, it seems likely that we can solve this equation by 

guessing that n is also proportional to e-bt: 

 np = Ae-bt 

where A is a constant that we’ll need to determine, and I’ve used to subscript p to emphasize that this is 

called the particular solution. 

 Plug np into the differential equation: 

 -bAe-bt = G0e-bt – Ae-bt/n 

The exponential terms conveniently divide out, and we can solve for A: 
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 Now we need the complementary solution nc:  this is the solution to the equation obtained by 

dropping the nonhomogeneous term: 

 dnc/dt = –nc/n 

nc is evidently Bexp(-t/n), where B is a constant that we need to determine from the initial condition. 

 The complete solution n = np + nc is 
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To find B, use the initial condition n(0) = 0: 
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and we obtain the same solution that Laplace transforms gave us previously. 

Example 

 A constant monochromatic photon flux of N0 illuminates the surface (x = 0) of thick p-type Si.  

Find n(x), neglecting surface recombination.  (This means dn/dx = 0 at the surface, as we’ll see in the 

next lecture.) 

Solution 

 Recall that the generation rate G = N0e-x. 

 Write the minority carrier diffusion equation, where the time derivative is 0 because nothing is 

changing.  

 0 = Dn(d2n/dx2) + N0e-x – n/n 

 This is a nonhomogeneous equation because of the generation term.  Since the nonhomogeneous 

term is proportional to e-x, let’s guess that the particular solution 

 np = Ae-x 
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 Plug this into the differential equation: 

 0 = Dn2Ae-x + N0e-x - Ae-x/n 

Solving for A: 
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  

 Now we look for the complementary solution nc by dropping the nonhomogeneous term: 

 0 = Dn(d2nc/dx2) – nc/n 

 The solution is  

 nc = Bexp(-x/Ln), 

where I’ve dropped the exp(+x/Ln) solution because the silicon is thick and n can’t approach infinity as 

x gets very large. 

 So the complete solution is 
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and we need to use the boundary condition to solve for B.  At x = 0, dn/dx = 0: 
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Finally 
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The algebra’s getting messy.  In the next lecture, it gets worse.  Much worse. 

 Look at the solution above.  Mathematically and conceptually, is it possible for excess carrier 

concentration to be negative at any location? 
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Lecture 21:  Surface recombination 

 Every silicon atom wants to bond with four atoms surrounding it.  At the surface of silicon, there 

are no more atoms in one direction, so the surface atoms can’t achieve a fourth bond:  there are dangling 

bonds at the surface.  The dangling bonds create energy levels within the bandgap, and this causes a lot of 

recombination at the surfaces. 

 The surface recombination rate [cm-2s-1] is the recombination rate at the surface per unit area.  

All of the diffusion current into the surface results in recombination because the current can’t keep going.  

So 

 surface recombination rate = |minority carrier current density|/q 

 We divide by q to obtain the number of minority carriers flowing into the surface (per unit area 

per unit time), rather than the total charge of these carriers flowing into the surface (per unit area per unit 

time). 

 Also, the surface recombination rate is proportional to the excess carrier concentration at the 

surface: 

 surface recombination rate = Sn(surface), or Sp(surface) 

where S is called the surface recombination velocity (if only because it has units of velocity). 

 Combining these expressions for surface recombination yields 

 Sn(surface) = Dn|dn/dx|surface 

for electrons in p-type semiconductors. 

(Notice that this is exactly analogous to a convective boundary condition with T = 0, from the very first 

lecture:  
surface

surface
dx

dT
kTTh   ) 

 Let’s see how we can get rid of the absolute value sign.  Carriers must flow into surfaces where 

recombination occurs because the surface recombination is gobbling up carriers, not sending them out.  If 

we plot n vs. x, n must slope down towards surfaces:  if x increases to the right, the slope must be 

positive at the left surface (x1) and negative at the right surface (x2): 

      n(x) 

 

 

          x 

       x1    <     x2 
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We see that dn/x is positive at x1 and negative at x2.  Therefore 

 Sn(x1) = Dn(dn/dx)|x1 and Sn(x2) = -Dn(dn/dx)|x2 

Similarly, for holes in n-type silicon, 

 Sp(x1) = Dp(dp/dx)|x1 and Sp(x2) = -Dp(dp/dx)|x2 

For the rest of this lecture, let’s drop the p and n subscripts from D, , and L. 

Example 

 Find n(x) in p-type silicon with constant uniform generation G and identical surface 

recombination S at both surfaces (x = W/2). 

Solution 

 We start with the minority carrier diffusion equation, where the time derivative is 0. 

 0 = D(d2n/dx2) + G – n/ 

First we look for a particular solution.  Since the nonhomogeneous term is a constant, it’s a good guess 

that np is a constant (and the spatial derivative is 0): 

 0 = G – np/ 

So np = G. 

 Next, we look for the complementary solution, dropping the nonhomogeneous term: 

 0 = D(d2nc/dx2) – nc/ 

We’ve see this before.  But now, let’s write the solution in terms of cosh and sinh: 

 nc = Acosh(x/L) + Bsinh(x/L) 

Generally, when a material is (infinitely) thick, it’s most convenient to use exponential functions.  But 

when a material is thin, it’s most convenient to use cosh and sinh. 

 Because the silicon and the illumination are symmetrical about x = 0, we know that n must be 

an even function, so B must be 0.  The complete solution is then 

 n = G + Acosh(x/L), 

where we must determine A from the boundary conditions. 

 At x = W/2, 

 Sn(W/2) = -D(dn/dx)|W/2 
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Plug n into the boundary condition: 

 SG + SAcosh(W/2L) = -(DA/L)sinh(W/2L) 

So  

 




















L

W
S

L

W

L

D

GS
A

2
cosh

2
sinh


 

Example 

 In p-type silicon with the same surface recombination velocity on both surfaces (x = W/2), the 

excess carrier concentration, due to illumination, is initially uniform:  n(x,0) = C.  At t = 0, the 

illumination ceases.  Determine n(x,t). 

Solution:  Fourier series! 

 Write the minority carrier diffusion equation, where G = 0 for t > 0: 

 n/t =  D(2n/x2) – n/ 

Assume n(x,t) is a product of a function of x and a function of t: 

 n(x,t) = X(x)T(t) 

Plug this into the differential equation: 

 X(dT/dt) =  DT(d2X/dx2) – XT/ 

Divide by XT : 

 (1/T)(dT/dt) =  (D/X)(d2X/dx2) – 1/ 

 For convenience, I’ll rearrange a little: 

 [(1/T)(dT/dt) + 1/]/D =  (1/X)(d2X/dx2)  

 How can a function of T equal a function of X?  If both equal the same constant.  Let’s call it -2.  

So we now have two equations: 

 [(1/T)(dT/dt) + 1/]/D = -2 

and 

 (1/X)(d2X/dx2) = -2. 

The t equation can be written 
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 dT/dt = -(1/ + 2D)T 

The solution is 

 T = exp[-t(1/ + 2D)] 

(I’ll put a multiplicative constant in X, so I don’t need it in T.) 

 The solution to the x equation is 

 X = Acos(x), 

where I dropped the sine because of the symmetry of the problem. 

 So a possible solution is 

 n = Acos(x)exp[-t(1/ + 2D)] 

 Next, we use the boundary conditions to determine possible values of .  At x = W/2: 

 Sn(W/2,t) = -D(n/x)|x=W/2 

Plug n into the boundary condition (and divide out the time function): 

 SAcos(W/2) = DAsin(W/2) 

So 

 cot(W/2) = D/S 

but I want to rewrite the right side to see a factor of W/2: 

 cot(W/2) = (2D/SW)(W/2) 

This is a transcendental equation.  It has no exact analytical solutions!  We can solve it with a computer.  

We can also understand it better by solving it graphically:  plot cot(W/2), the black curves below, and 

also (2D/SW)(W/2), the red line, as functions of W/2: 
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Where the red line intersects a black curve, we’ve found a value of W/2 that satisfies the transcendental 

equation.  As you can see, there are infinite possible values of , and we label them with subscripts. 

 So the complete solution we need is a sum of solutions with all possible values of : 
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How do we determine Ai for each of the infinite terms?  We use the initial condition n(x,0) = C: 

  
i

ii xAC cos  

What’s next?  Fourier to the rescue!  We multiply both sides by cos(jx) and integrate from –W/2 to W/2.  

All the terms integrate to 0 except for i = j.  (It’s not obvious that this should be true, but you can confirm 

it by evaluating the integrals where i isn’t j.) 

 For i = j: 
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 Since both integrands are even functions, let’s simplify by changing the lower limits to 0 (we’ve 

divided both sides by 2): 
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Evaluating the integrals: 
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So the final result is 
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where i are the solutions to cot(iW/2) = Di/S. 
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 Why did I used hyperbolic trig functions in the first example, but circular (regular) trig functions 

in the second? 

Lecture 22:  p-n junction:  the heart of solar cell, LED, or other diode 

(Honsberg and Bowden, Ch. 3.5 and 3.6) 

 Suppose we have some p-type silicon, and we cause a high concentration of donor atoms to 

diffuse into the material on one side.  The donor concentration overwhelms the acceptor concentration 

and locally transforms the material to n-type.  But the opposite side of the silicon is still p-type.  Where n-

type and p-type meet, we have p-n junction, and the device so formed is called a diode.  The physics of 

the p-n junction dominates the behavior of solar cells, LEDs, and even transistors.  

 So what happens at a p-n junction? 

 

Free electrons in the n region cheerfully drop into holes in the p region.  This process can’t continue 

forever because electric charge builds up:  Negative charge builds up on the p side, and positive charge is 

left behind on the n side.  This creates an electric field (pointing, as always, from positive charge to 

negative charge).  The electric field prevents additional electrons from moving to the p side (electrons are 

repelled by the electrons that have already gone over). 

 The charged region is called the depletion region because it’s depleted of mobile charge carriers.  

(The free electrons have left the n-side, and the holes on the p-side recombined with those electrons.) 

 Recall that voltage is the (negative of the) integral over an electric field, and the electric field 

points from high potential to low.  So there’s a built-in voltage  across the depletion region, with the 

higher potential on the right. 

 What happens when an external voltage is applied across a p-n junction?  Suppose the positive 

end of the battery is connected to the p-type material (this is called forward bias): 
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 We want to derive an equation for I through the diode as a function of applied voltage V across it.  

The result is called the ideal diode law.  Let’s take a look at carrier concentrations on both sides of the 

junction: 

 

The equilibrium minority carrier concentrations are np0 = ni
2/NA on the p side and pn0 = ni

2/ND on the n 

side.  We assume that these equilibrium concentrations exist far from the depletion region.  However, 

at the edge of the depletion region, the minority carrier concentrations are affected by applied voltage V.  

We need one new equation (for each carrier type), the law of the junction (minority carrier concentration 

at junction edges increases exponentially with V): 

 np(0) = np0eqV/kT and pn(0) = pn0eqV/kT 

where k is the Boltzmann constant.  

 The law of the junction gives us boundary conditions, so now we simply solve the minority 

carrier diffusion equation in each region.  We assume steady-state conditions and no illumination (for 

now).  So in the n-type region the diffusion equation is  

 0 =  Dp(d2p/dx2) – p/p, 

and the boundary conditions are p(0) = pn(0) – pn0 = pn0(eqV/kT -1), and p(x) doesn’t get infinitely large 

at infinitely large x.  (This boundary condition only works for thick diodes:  the surfaces are very far 

from the junction.  For thin diodes, we’d need to account for surface recombination.)  We’ve already 

solved a nearly identical problem!  The solution is 

 p(x) = pn0(eqV/kT -1)exp(-x/Lp) 

Plug it into the diffusion equation and the boundary conditions to confirm! 

 Similarly, in the p-type region, 
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 n(x’) = np0(eqV/kT -1)exp(-x’/Ln) 

For convenience, I use a different coordinate x’. 

 We can calculate minority carrier diffusion currents.  On the n side: 

 Jp(x) = -qDp(dp/dx) = (qDppn0/Lp)(eqV/kT -1)exp(-x/Lp) 

And on the p side: 

 Jn(x’) = qDn(dn/dx) = -(qDnnp0/Ln)(eqV/kT -1)exp(-x’/Ln) 

Both currents are in the same direction (to the right): 

 

 We want to know the total current density, J = Jp + Jn.  The total current is uniform across the 

diode because otherwise charge would accumulate somewhere.  So if we can determine total current 

anywhere, we know total current everywhere.  So far we know minority carrier currents, but not majority 

carrier currents.  We now assume that the depletion region is so narrow that the each current density (hole 

and electron) stays approximately constant across it: 
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 So we know the total current density J = |Jn(0)|+ |Jp(0)| in the depletion region, and this is the total 

current density everywhere: 

 J = q(Dppn0/Lp + Dnnp0/Ln)(eqV/kT -1) 

We can multiply by cross-sectional area A to get current: 

 I = qA(Dppn0/Lp + Dnnp0/Ln)(eqV/kT -1) = I0(eqV/kT -1) 

where we gathered all the constants into one constant called I0, “dark saturation current.”  We have now 

obtained the ideal diode law! 

 To derive the I vs. V equation for a solar cell, the only modification we have to make is to add 

illumination.  If we assume a uniform generation rate G, the diffusion equation becomes 

 0 =  Dp(d2p/dx2) + G – p/p. 

The particular solution is Gp and the complementary solution is Bexp(-x/Lp), where we must determine 

B from the boundary condition (the law of the junction).  Since 

 p(x) = Gp + Bexp(-x/Lp) 

and 

 p(0) = pn(0) – pn0 = pn0(eqV/kT -1), 

 pn0(eqV/kT -1) = Gp + B 

and finally 

 p(x) = Gp + [pn0(eqV/kT -1) - Gp]exp(-x/Lp). 

 The hole current density on the n side is now 
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 Jp(x) = -qDp(dp/dx) = (qDppn0/Lp)(eqV/kT -1)exp(-x/Lp) – (qDpGp/Lp)exp(-x/Lp) 

and  

 Jp(0) = (qDppn0/Lp)(eqV/kT -1) – qLpG 

where I’ve used Dpp = Lp
2.  Similarly, 

 Jn(0) = (qDnnp0/Ln)(eqV/kT -1) – qLnG 

and the total current is 

 I = qA(Dppn0/Lp + Dnnp0/Ln)(eqV/kT -1) – qG(Lp + Ln) = I0(eqV/kT -1) - Isc 

where Isc = qG(Lp + Ln) is the short circuit current (when V = 0), which can also be called the light-

generated current.  Minority carriers generated (by light absorption) within a diffusion length of the 

junction are swept across the junction and contribute to light-generated current. 

 

 A photon absorbed at what location in the solar cell is most likely to contribute to photocurrent?  
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Lecture 23:  Solar cells 

(Honsberg and Bowden, Ch. 4.1, 4.2, 5.1) 

 

 \ 

(figure from http://pveducation.org/pvcdrom/solar-cell-operation/solar-cell-structure) 

 Suppose the emitter is n-type silicon and the base is p-type silicon.  The p-n junction is where 

the emitter and base meet.  Why is the junction so close to the surface?  Most sunlight is absorbed within 

about 10 m of the surface.  We want the light absorbed as close as possible to the p-n junction.  If light is 

absorbed more than a diffusion length away from the junction, the electron-hole pairs recombine before 

they get a chance to contribute to photocurrent.   

 The antireflection coating is very important because bare silicon reflects about a third of the 

photons that arrive.  The antireflection coating is a thin film designed to minimize reflection.  As you 

learned in introductory physics, reflection is reduced if destructive interference is achieved:  light 

reflecting off the top of the thin film should interfere destructively with light reflecting off the bottom of 

the thin film. 

 To improve solar cell efficiency, we must reduce other loss mechanisms as well.  We can analyze 

the quantum efficiency of a solar cell:  the quantum efficiency is the fraction of photons (of a particular 

wavelength) that generate carriers that contribute to photocurrent.  The quantum efficiency at different 

wavelengths informs us about loss mechanisms at different depths within the solar cell:  short 
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wavelengths are absorbed near the front (the top), and long wavelengths are absorbed near the back (the 

bottom). 

 

(figure from http://pveducation.org/pvcdrom/solar-cell-operation/quantum-efficiency) 

 Very short wavelengths are absorbed too close to the front surface, and surface recombination 

takes a heavy toll.  The highest quantum efficiency occurs at wavelengths absorbed near the junction.  

Long wavelengths lose quantum efficiency for three reasons:   

 long wavelengths have low absorption coefficients (some infrared light passes right through the 

silicon) 

 long wavelengths are absorbed far from the front surface, more than a diffusion length below the 

junction 

 long wavelengths are absorbed near the back surface, and carriers generated there are subject to 

surface recombination 

 The electric power delivered by a solar cell is  

 P = |I|V = [Isc - I0(eqV/kT -1)]V 

and depends on 

 the intensity of light shining of a solar cell 

 the efficiency of the solar cell 

 the resistance of the external load (the thing that the solar cell is powering, maybe a motor) 

http://pveducation.org/pvcdrom/solar-cell-operation/quantum-efficiency
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If no load is attached, no current flows (we call this open circuit), and P = 0.  On the other hand, if the 

load resistance is 0 (we short circuit the two ends of the solar cell together with a wire), voltage is 0 and 

therefore P = 0.  So the solar cell delivers useful power at intermediate conditions.  To understand the 

optimal load resistance, let’s look at |I| vs. V and P vs. V:   

 

(figure from http://pveducation.org/pvcdrom/solar-cell-operation/fill-factor) 

 The red curve is current |I|.  As we know from the equation we derived, 

 |I| = Isc - I0(eqV/kT -1). 

We see that when V = 0, |I| = Isc, the largest possible current.  |I| gradually decreases as V increases, until I 

= 0 at open-circuit voltage (Voc).  We’re most concerned with power, the product of current and voltage 

(the blue curve).  The power is maximized at the maximum power point, (Vmp, Imp).  A quantity called 

the fill factor is a measure of the “squareness” of the IV curve: 

 FF = ImpVmp/(IscVoc) 

We want the fill factor to be as large as possible (as close to 1 as possible). 

 The efficiency  of the solar cell is defined as the maximum electric power that can be delivered 

by the solar cell, as a fraction of the incoming light power: 

  = ImpVmp/(light power in) = IscVocFF/(light power in) 

To increase solar cell efficiency, we try to increase short-circuit current, open-circuit voltage, and fill 

factor.  Let’s briefly consider design strategies for increasing each of these. 

 We recall that short circuit current (for a thick solar cell) is 

 Isc = qG(Lp + Ln) 

http://pveducation.org/pvcdrom/solar-cell-operation/fill-factor
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We can try to increase generation by reducing optical losses (reflection and shading due to front contacts).  

We can try to increase diffusion length by increasing carrier lifetime (by finding ways to eliminate “trap” 

energy levels in the bandgap, caused by crystalline defects).   

 If we look at our I vs. V equation and plug in I = 0 (open circuit), we find 

 Voc = (kT/q)ln(Isc/Io+1) 

It looks as though increasing temperature would be helpful, but unfortunately I0 (which we want to 

minimize) also increases with temperature.  So actually Voc decreases with temperature.  This is why 

some cooling mechanism (possibly heat fins!) is required for concentrator cells, on which mirrors focus 

concentrated sunlight. 

 The fill factor is influenced by resistance in the solar cell.  A solar cell can be modeled as a diode, 

a current source, and two resistors: 

 

(figure from http://pveducation.org/pvcdrom/solar-cell-operation/impact-of-both-resistances) 

The series resistance is due to the resistivity of the emitter and the base, as well as the contact resistance 

of the metal on the silicon.  The series resistance is ideally 0.  The shunt resistance, however, is ideally 

infinite. 

 The typical efficiency of commercial solar cells is 14-19%.  These are usually multicrystalline 

silicon solar cells; multicrystalline silicon is cheaper (and lower quality) than the monocrystalline silicon 

used for computer chips. 

 The highest efficiency of a monocrystalline silicon solar cell is 27.6%. 

 The best efficiency for a solar cell with a single p-n junction is 29.1%.  It’s made of gallium 

arsenide. 

 The world record efficiency is 46%, for a solar cell with four p-n junctions.   

 Let’s understand the limitations of a solar cell with a single p-n junction.  If the solar cell is made 

of a single material (crystalline silicon, for example), there’s a single bandgap energy.  Photons with less 

energy than the bandgap energy cannot generate electron hole pairs; the energy of these photons is lost.  

http://pveducation.org/pvcdrom/solar-cell-operation/impact-of-both-resistances
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Photons with more energy than the bandgap energy create electron-hole pairs, but photon energy in 

excess of the bandgap energy is converted to heat.  So a particular bandgap energy is optimized for a 

particular photon energy.  A solar cell with four p-n junctions is made of four different materials, each 

with a different bandgap energy.  The material with the highest bandgap is on the top, and it absorbs the 

photons with the highest energies.  The photons with lower energies pass right through the top material 

and are absorbed by a material with a lower bandgap energy.  The following diagram illustrates how this 

works in a solar cell with two junctions: 

 

(figure from http://pveducation.org/pvcdrom/solar-cell-operation/tandem-cells) 

 Here’s a chart of record efficiencies: 

http://pveducation.org/pvcdrom/solar-cell-operation/tandem-cells
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(This plot is courtesy of the National Renewable Energy Laboratory, Golden, CO.) 

 Georgia Tech had a string of multicrystalline-silicon record efficiencies in the mid-nineties.  (I 

can’t take any credit because I joined the photovoltaics research group in 1998.) 

 To reduce reflection losses in a solar cell, why can’t we just paint it black?  (This is a question I 

actually asked a more experienced student when I was new at Georgia Tech.) 

 


