Name: \qquad

Honor Pledge: I am adhering to the Honor Code while taking this test.
Signature: \qquad Date: \qquad

1. Using D flip-flops and logic gates, design a counter that outputs the following sequence: $00,01,10$, $00,01,10 \ldots$ (We don't care what happens if the counter is somehow forced into the unwanted state
11.)
A. How many flip-flops do you need? Two.
B. Write out the necessary truth table, showing how Next State depends on Present State.

Present State		Next State	
q1	$q 0$	$D 1$	$D 0$
0	0	0	1
0	1	1	0
1	0	0	0

C. (Two points.) Write a logic equation for each bit's Next State.
$D 0=\sim(q 1 \mid q 0)$
$\mathrm{D} 1=\sim \mathrm{q} 1 \& q 0$
D. If the initial state is 11 , what will the next state be (according to your logic equations)? 00
E. (Two points.) Write out the circuit diagram.

2. Using D flip-flops and logic gates, design a Mealy machine that detects the sequence 0101.
A. First, list all the states (s0, s1, etc.) that we need to define, and briefly define them.
s0: nothing detected
s1: first 0 detected
s2: 01 detected
s3: 010 detected
B. (Four points.) Write out the state diagram (not the circuit diagram).

C. How many flip-flops do you need? 2
D. Write out the necessary truth table, showing how Next State and Output depend on Present State and Input.

	q1	q0	In	D1	D0	Out
s0	0	0	0	0	1	0
s0	0	0	1	0	0	0
s1	0	1	0	0	1	0
s1	0	1	1	1	0	0
s2	1	0	0	1	1	0
s2	1	0	1	0	0	0
s3	1	1	0	1	0	1

E. (Three points.) Write a logic equation for each bit's Next State and for the Output.
$D 0=\sim \ln$
$\mathrm{D} 1=\mathrm{q} 0 \& \ln \mid \mathrm{q} 1 \& \sim \mathrm{q} 0 \& \sim \ln$

Out = q1 \& q0 \& \ln
F. (Three points.) Write out the circuit diagram.

