Name: \qquad

Honor Pledge: I am adhering to the Honor Code while taking this test.

Signature: \qquad Date: \qquad

1. The figure shows the simulation of a D flip-flop. z is the output.

A. Which input is normally called "clear" or "reset"? b
B. Why is the value of the output unknown before 10 ns ? We are in a "store" state, and we don't know what value is being stored.
C. If \mathbf{b} falls to 0 at 68 ns , while \mathbf{a} remains at 0 and \mathbf{c} remains at 1 , will the output change? no
D. (Five points.) Write a Verilog module (not the test fixture) to implement this circuit.
module partF (input a, input b, input c, output reg z);
always @ (posedge a or posedge b)
if $(b==1) z<=0 ;$
else $z<=c ;$
endmodule
E. (Two points.) Write a Verilog module to implement a circuit whose output becomes 0 immediately when the clear input goes low (not high); otherwise, the circuit is identical to the previous case.
module partF (input a, input b, input c, output reg z);
always @ (posedge a or negedge b)
if $(b==0) z<=0$;
else $z<=c ;$
endmodule
2. Using D flip-flops and logic gates, design a Mealy machine that detects the sequence 1001.
A. First, list all the states (s0, s1, etc.) that we need to define, and briefly define them.
s0: nothing detected
s1: first 1 detected
s2: 10 detected
s3: 100 detected
B. (Four points.) Write out the state diagram (not the circuit diagram).

C. How many flip-flops do you need? 2
D. Write out the necessary truth table, showing how Next State and Output depend on Present State and Input.

	q1	q0	In	D1	D0	Out
s0	0	0	0	0	0	0
s0	0	0	1	0	1	0
s1	0	1	0	1	0	0
s1	0	1	1	0	1	0
s2	1	0	0	1	1	0
s2	1	0	1	0	1	0
s3	1	1	0	0	1	1

E. (Three points.) Write a logic equation for each bit's Next State and for the Output.
$\mathrm{D} 0={ }^{\sim} \mathrm{q} 1 \& \ln |\mathrm{q} 1 \& \sim \mathrm{q} 0| q 1 \& q 0 \& \ln$
$D 1=\sim \ln \&(q 1 \wedge q 0)$
Out $=\mathrm{q} 1 \& q 0 \& \mathrm{In}$
F. (Three points.) Write out the circuit diagram.

G. Write an expression for D0 (as a function of q0, q1, and In) that requires only three logic gates (including NOTs). Your response for part G may be the same as part of your response for part E .
$\mathrm{D} 0=\ln \mid \mathrm{q} 1 \& \sim \mathrm{q} 0$
H. Write an expression for D1 (as a function of q0, q1, and In) that requires only three logic gates (including NOTs). Your response for part H may be the same as part of your response for part E .
$D 1=\sim \ln \&(q 1 \wedge q 0)$

