Name: \qquad

Honor Pledge: I am adhering to the Honor Code while taking this test.
Signature: \qquad Date: \qquad

1. The figure shows the simulation of a D flip-flop. z is the output.

A. Which input is normally called "clear" or "reset"?
B. Why is the value of the output unknown before 10 ns ?
C. If \mathbf{b} falls to 0 at 68 ns , while \mathbf{a} remains at 0 and \mathbf{c} remains at 1 , will the output change?
D. (Five points.) Write a Verilog module (not the test fixture) to implement this circuit.
E. (Two points.) Write a Verilog module to implement a D flip-flop whose output becomes 0 immediately when the clear input goes low (not high); otherwise, the circuit is identical to the previous case.
2. Using D flip-flops and logic gates, design a Mealy machine that detects the sequence 1001.
A. First, list all the states ($s 0, \mathrm{~s} 1$, etc.) that we need to define, and briefly define them.
B. (Four points.) Write out the state diagram (not the circuit diagram).
C. How many flip-flops do you need?
D. Write out the necessary truth table, showing how Next State and Output depend on Present State and Input.
E. (Three points.) Write a logic equation for each bit's Next State and for the Output.
F. (Three points.) Write out the circuit diagram.
G. Write an expression for D0 (as a function of q0, q1, and In) that requires only three logic gates (including NOTs). Your response for part G may be the same as part of your response for part E.
H. Write an expression for D1 (as a function of q0, q1, and In) that requires only three logic gates (including NOTs). Your response for part H may be the same as part of your response for part E .
