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Problems 1-4:  Simplify each Boolean expression to one of the following ten expressions:  


0, 1, A, B, AB, A+B, 
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Each answer may be used as many times as necessary.

1.  A(A+
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by the distributive law

= A+0+B



because AA = A and A
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= A+B




because A + 0 = A 
2. (A+B)(
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by the distributive law
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because B
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by the distributive law


= A0 +
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because 0 ANDed with anything is 0
3.  
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because 0 ANDed with anything is 0
The trick is not to bother to simplify the terms in parentheses.

4.  
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DeMorgan's Theorem is needed.  I prefer the graphical form.  First, I draw the gate representing the original expression (NOR receiving NOT A and NOT B):
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DeMorgan's Theorem says I can swap shapes (OR to AND) if I invert all inputs and outputs:
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So 
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Problems 5-8:  Write any valid Boolean expression for Q as a function of the input variables. 
5.  Q = 
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Problems 9-10:  Complete the truth tables.

9.  Two points.
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A
Q

0
___1__

1
___0__

The safest thing to do is to consider each case (0 and 1) separately, "plugging in" each possible value for A.  This way, if you make a mistake, you don't cause both your answers to be wrong.  Then, if you have time, you can reason as follows to confirm your answers.  

The AND receives A and NOT A, which can never be 1 at the same time, so the AND output is always 0.  So the NOR outputs 1 when A is 0 and 0 when A is 1.
10.  Four points.
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A
B
Q

0
0
__0___

0
1
__0___

1
0
__1___

1
1
__0___

Again, the safest thing to do is to "plug in" each of the four combinations of A and B.  Then you could confirm your results with the following reasoning:

Q can only be 1 if both inputs to the final NOR are 0.  So (for Q to be 1) B must be 0, and in order for the first NOR to output 0, A must then be 1.  So Q is 1 if A = 1 and B = 0; otherwise, Q = 0.

11.  Show how to make a 2-input NAND out of 2-input NORs.

I start with what I want, a NAND gate:
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Next, I apply De Morgan's Law, swapping shapes and inverting all inputs and outputs:
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I know that a NOR with its inputs tied together is a NOT.  So I replace each NOT with a NOR whose inputs are tied together.  Also, I turn the OR into a NOR and negate the change by adding a NOT (a NOR with its inputs tied together) at the output:
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12.  Show how to make a 2-input NAND out of a 3-input NAND.

A first guess is that we can wire together two of the inputs of the 3-input NAND to create a 2-input NAND:
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A little thought confirms that this behaves as a 2-input NAND.

13.  Show how to make a 4-input NAND out of any combination of any 2-input gates.

A 4-input NAND is a 4-input AND followed by a NOT.  A 4-input AND can be made by ANDing together the outputs of two 2-input ANDs.
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Problems 14-16 are based on the following truth table:

A
B
Q

0
0
1

0
1
0

1
0
1

1
1
1

14.  Write a Boolean expression for Q as a function of A and B.

Since there's only one way Q can be 0, the simplest way to find a Boolean expression that matches the truth table is to "read off" 
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B.  This arguably is not an acceptable answer because it's an expression for 
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, not an expression for Q.  NOT-ing both sides yields 
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.  This is an acceptable answer, though De Morgan's Law could be used to simplify it to Q = A + 
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.  
15.  Design a circuit that implements the truth table.
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.
YOU MUST LABEL THE CIRCUIT DIAGRAM WITH THE LETTERS A, B, AND Q; OTHERWISE, THE GRADER CANNOT ASSUME YOU MEANT FOR THEM TO GO IN THE RIGHT PLACES.

Of course, it's equally acceptable to use De Morgan's Law (swap shapes and invert all inputs and outputs) to write
[image: image58.png]


,

which, as noted above, is Q = A + 
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.  

16.  Using only NORs, design a circuit that implements the truth table.

Let's start with 
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because it's simpler to go from an OR to a NOR than a NAND to a NOR.  Let's make the OR a NOR and cancel the effect of this change by adding a NOT at the output:
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.
Finally, I replace each NOT with a NOR whose inputs are tied together:
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