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Casimir effect between pinned particles in
two-dimensional jammed systems

Juan-José Liétor-Santos and Justin C. Burton*

The Casimir effect arises when long-ranged fluctuations are geometrically confined between two surfaces,

leading to a macroscopic force. Traditionally, these forces have been observed in quantum systems and

near critical points in classical systems. Here we show the existence of Casimir-like forces between two

pinned particles immersed in two-dimensional systems near the jamming transition. We observe two

components to the total force: a short-ranged, depletion force and a long-ranged, repulsive Casimir-like

force. The Casimir-like force dominates as the jamming transition is approached, and when the pinned

particles are much larger than the ambient jammed particles. We show that this repulsive force arises

due to a clustering of particles with strong contact forces around the perimeter of the pinned particles.

As the separation between the pinned particles decreases, a region of high-pressure develops between

them, leading to a net repulsive force.

1 Introduction

One of the most astonishing and counterintuitive ideas in
modern physics is that the vacuum is not empty. Quantization
of the electromagnetic fields leads to a non-zero ground-state
energy density,1,2 which can have physical manifestations. In
1948, Hendrik Casimir predicted that adjacent conducting
surfaces can confine the spectrum of zero-point modes, leading
to a mutual attraction.3 Since then there have been a number of
theoretical and experimental developments confirming this
prediction, as well as identifying new electromagnetic, Casimir
phenomena in various systems,4–9 including the onset of repulsive
long-ranged forces when the boundary condition for ideal con-
ducting plates is relaxed.10–12

While the original Casimir force is of purely quantum origin,
there are analogous interactions that arise from the confine-
ment of fluctuations in classical systems.13–15 Perhaps the best
known example of these is the critical Casimir force described
by Fisher and de Gennes.16 A binary liquid mixture close to the
critical point experiences large-scale concentration fluctuations in
the homogeneous phase. The fluctuations occur over a maximum
correlation length which diverges as the system approaches the
critical point. When objects are immersed in this mixture, they
confine the fluctuations within the fluid between their surfaces,
giving rise to a pairwise interaction which depends on the
boundary condition at the surface.17,18 For a single particle,
the first direct experimental measurements verified theoretical
predictions.19 This interaction can also lead to aggregation and

self-assembly of colloidal particles,20–23 a rich problem which
includes many-body interactions.24,25

Critical Casimir forces are a universal feature of second-
order phase transitions.15,18,26 They were first observed in thin
4He films near the superfluid l-point,27 and have also been
observed in thin liquid films suspended on an immiscible liquid
near the critical mixing point.28,29 In all cases, the force depends
on the surface–surface separation, the geometry of the interfaces,
and more importantly, on the boundary condition for the order
parameter. Symmetric boundary conditions almost always give
rise to an attractive force, and asymmetric boundary conditions
lead to repulsive forces.

Casimir forces have strengths that are proportional to
the driving energy of the fluctuations, and thus proportional
to h� in quantum systems and temperature in classical systems.
However, Casimir-like forces have recently been identified in a
number of nonequilibrium systems as a result of the confine-
ment of fluctuations.30,31 In most of these cases, the fluctua-
tions arise from energy input into the system either by an
external field or by the individual particles.32 Examples include
driven acoustic noise in a gas,33 soft modes in polymer melts,34

temperature gradients in liquids,35,36 active matter composed of
swimming particles,37 and hydrodynamic fluctuations in driven
granular fluids.38–42 In many of these examples, the Casimir-like
forces do not obey a simple scaling function in accordance with
Fisher and de Gennes’ original argument.16 In non-equilibrium
systems, the boundary conditions can depend on the order para-
meter, and the spectrum of fluctuations are not well-defined, in
contrast to thermal and quantum systems.

As opposed to classical thermodynamic phase transitions
where temperature plays a pivotal role, the jamming transition
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in granular materials is mainly governed by changes in the
density.43 In the simplest scenario, a jammed system is
composed of frictionless spheres with finite-ranged interactions
at T = 0 (zero kinetic energy). As the density changes, the system
reaches a special point, called point J, where the spheres begin to
touch one another and the system develops a finite pressure.44,45

The physics at point J shares many similarities to second-order
phase transitions,46,47 yet it is distinctly different. It is a rare
example of a random first-order transition in which there are
several length scales that diverge as the critical density of the
system is approached.48–52

Here we report simulations which show the existence
of Casimir-like forces in systems composed of frictionless
particles near the T = 0 jamming transition in two dimensions.
The particles interact through a finite-ranged repulsive force, so
that there is a well-defined isostatic point as the density is
varied. At this isostatic point, the number of mechanical contacts
between the particles is equal to the number of motional degrees of
freedom. Two equal-sized particles are pinned while the rest of the
system, composed of N particles of two sizes, are quenched to
mechanical equilibrium, as shown in Fig. 1. Because the pinned
particles are fixed in place, they retain a net force, which has two
distinct components. The particles experience a short-ranged deple-
tion force which depends on the details of the pair-distribution
function, and a long-ranged repulsive force. This long-ranged force
increases in magnitude near the jamming transition, as does the
fluctuations of this force between different particle configurations.

We identify this long-ranged force as a Casimir-like force
induced by fluctuations in systems near jamming. The specific
dependence of the force on particle separation will be determined
by the nature of the fluctuations which give rise to the force. In
granular systems, it is well-known that forces are spatially hetero-
geneous and are clustered in into linear chains.53,54 The distribu-
tions of the strength and length of these force chains have been
studied.55–58 These studies, and many others, have shown that
both strong and long force chains are exponentially rare, and
depend on the state and history of the system. For example,
shearing a granular system in one direction will make force chains
preferentially align to resist the applied shear, and can induce
jamming in unjammed systems.59

While it is not clear how confinement, packing fraction, and
system preparation affects the distribution of force chains, our
results show that near the jamming transition, the Casimir-like
force follows a universal form which scales as B� ADf1/2, where
Df = f � fc is the distance to the isostatic packing fraction fc,
and the parameters B and A decrease as the pinned particles
move further apart. In our simulations, the system is at finite
pressure, so that f is strictly greater than fc. This Casimir-like
force is distinctly different than other Casimir-like forces
reported in granular systems.38–42 In the latter, hydrodynamic
fluctuations are induced by external mechanical excitation, so
that there is significant kinetic energy in the system (T 4 0).
In our simulations, the Casimir-like force is determined by the
critical behavior and inherent fluctuations associated with the
T = 0 jamming transition.55,60

The origin of this force lies in the distribution of particles
with large forces in systems near jamming, and the coordina-
tion number of the jammed particles near the boundary of the
pinned particles. We find that the inclusion of pinned particles
in a jammed system reduces the mean coordination number of
the entire system. This reduction is mostly localized near the
boundary of the pinned particles. In addition, near jamming, the
largest contact forces occur between particles with the minimum
number of contacts, which is z = 3 in two dimensions. These two
properties result in the region between the pinned particles
having less than the mean number of contacts, and large contact
forces, which push the pinned particles apart. Although not
explicitly investigated here, we also show how our results may
be generalized to higher dimensions.

2 Methods

Our simulations consist of N particles that interact through a
finite-ranged, repulsive potential:45

V rij
� �

¼
K
e
a

1� rij

sij

� �a

for rij osij ;

0 for rij 4 sij ;

8><
>: (1)

where e is the energy scale of the interaction, rij is the distance
between the centers of particles i and j, sij = si + sj is the sum of
the particle radii, and a defines the type of interaction. Unless
otherwise noted, all simulations use a = 2 (harmonic interactions),
however, we obtain similar results with other values such as
a = 5/2 (Hertzian interactions). In order to prevent crystallization,
we use a binary mixture of particles with radii s and 1.4s, with
equal numbers of both particles. For these N particles, the
constant K = 1. In addition to these N particles, we include two
particles of radius R separated by a distance D + 2R, so that the
surface–surface separation is D (Fig. 1). These particles are
pinned in place, and not allowed to move. For large values of
R, eqn (1) produces a very soft potential so that the free particles
easily penetrate deep into the boundary of the pinned particles. To
avoid this, for particles interacting with the pinned particles,
we set K = (R + 1.4s)a/(2.8s)a. This way the force between
pinned particles and free particles is finite in the limit R - N.

Fig. 1 Schematic showing a typical simulation. Two pinned particles (yellow)
of radius R are held in place while a sea of bidisperse disks are quenched
around them. The distance between their surfaces is D. In equilibrium, the
pinned particles retain a net force, which is equal and opposite.
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Near the jamming transition (Df = 0) where the Casimir-like
force dominates, our results are insensitive to the choice of K
since the overlap distance is much less than both R and s.

Each simulation is initiated by fixing the positions of the
pinned particles, and placing the remaining N particles down at
random in a square box with sides of length L with periodic
boundary conditions on all sides. The free particles are then
instantaneously quenched to the nearest equilibrium configu-
ration using the FIRE algorithm.61,62 The algorithm is terminated
when all the kinetic energy has been removed from the system.
Our condition for equilibrium was chosen so that the magnitude
of any net force on the free particles is less than 10�14 � e/s.
Once the system reached equilibrium, we measured both the x
and y components of the residual force on the pinned particles
(Fx and Fy). Since these two particles are the only fixed objects in
the system, they must experience equal and opposite forces
according to Newton’s third law. Thus we report only the force
on the upper particle, so a positive force in the y-direction
corresponds to a net repulsive force between the two pinned
particles. The net force components on the pinned particles
will fluctuate between different quenched systems, and can be
positive or negative, thus we report ensemble averages for the
measured forces. Of special interest is the standard deviation of
the force distribution in an ensemble, since this is indicative of
the inherent force fluctuations in jammed systems, and will be
discussed in Section 3.

For small values of Df, the forces between particles are
naturally smaller since there is less overlap. It is more relevant
to study the net force normalized by the system pressure and
the radius of the pinned particles, F/(PR). The system pressure
was measured at each packing fraction, as defined in ref. 45:

P ¼ � 1

2L2

X
io j

rij
dVij

drij
: (2)

Here the summation runs over all free and pinned particles
in the system. All force measurements reported here will be
normalized in this fashion. In addition, the effects of the initial
placement of particles, as well as system annealing, will be
discussed in the results.

3 Results and discussion

There are two distinct components of the force between pinned
particles: a short-ranged force which depends on the local packing
structure, and a long-ranged Casimir-like force. The relative
strength of these two forces will depend on many length scales,
such as s, R, and D. In addition, there are multiple characteristic
length scales in the jamming transition which diverge as Df- 0.
These length scales are associated with the smallest rigid cluster
that can be formed at a given Df,50 and the system’s stability
to transverse deformations.51 For the time being, we associate a
general correlation length, x, with these diverging length scales
and we will discuss its relation to both later in the results.
Lastly, the size of the bounding box, L, will play an important
role due to the prescribed periodic boundary conditions.

Since the Casimir-like force is long-ranged, we can not ignore the
contribution from image particles in neighboring simulation cells.

In general, the normalized force between the two pinned
particles will be a function of the ratio of these length scales:

Fy

PR

� �
¼ Y

D

R
;
s
x
;
R

s
;
R

L

� �
: (3)

In practice, any linearly-independent combination of the ratios
of the four length scales would do, however, we have chosen
this combination because they are most relevant to our results.
A particularly important limiting case, which will be discussed
in Section 3.2, is when R/s - N and R/L - 0. In this limit the
details of the jammed medium between the pinned particles
are less important, and effects due to the finite size of the
simulation domain are negligible. In our simulations these
finite-size effects can not be ignored, and will affect the data in
different ways.

First, the basic dependencies of the residual force on D/R
and R/s are illustrated in Fig. 2a and b, which shows the x and
y-component of the mean force (hFxi and hFyi) for two different
size ratios at f = 0.855 (Df E 0.015). We observe that hFxi = 0,
as expected due to the symmetry of the geometry, as shown
in Fig. 1. However, hFyi can vary significantly with particle size,
R/s, and particle separation, D/R. Small pinned particles can
experience large positive and negative forces, which decay in
amplitude with D, although hFyi remains slightly positive for
large D (Fig. 2a). For large pinned particles, the net force can be
negative when the pinned particles are very close (D/s B 1),
as shown in Fig. 2b. This is due to depletion. However, for
larger values of D there is only a repulsive force, which slowly
decays as D increases.

We note here that by symmetry, hFyi will be zero when the
distance between the center of the pinned particles is equal to
half the system size, which occurs when D = D*, where D* is
given by

D� � L

2
� 2R: (4)

This is because of the periodic boundary conditions: each pinned
particle feels the same interaction from the image particles in
neighboring, tessellated systems. This will be important when
comparing systems with different values of R/s, and will be
discussed in detail. For smaller values of D/R, as D - 0, eventually
a point will be reached where only a few jammed particles
(or none) can fit between the pinned particles. This depletion-
like effect results in a net attractive force since little or no
particles exist to push the pinned particles apart. This is true
for both small and large values of R/s, as shown in Fig. 2a and b.

Each data point in Fig. 2a and b represents the average of
200 independent systems which have been quenched from a
random configuration. Fig. 2c and d shows the distribution of
forces obtained from these systems for two representative data
points, as indicated by the blue and red arrows. We found that
the distributions, in general, are not symmetric. In addition,
the mean is of the same order as the standard deviation. These
characteristics are in contrast to Casimir-like forces in other
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non-equilibrium systems, such as driven granular gases, where
the distributions are symmetric and the mean is less than 5%
of the standard deviation.38 In the limits R/s-N and D/s-N,
the distributions will become very narrow due to the dramatic
increase in possible jammed system configurations surrounding
the pinned particles.

3.1 Short-ranged forces: R/r B 1

First we will focus on the behavior of hFyi when R/s = 1.4. Fig. 3a
illustrates this behavior for two system sizes, N = 1000 and
N = 10 000. The curves are essentially identical, indicating that
the important qualitative features of hFyi are independent of
the system size, so long as D { L. Near D = 0, there is a net
attraction between the pinned particles, as evidenced by an
overall negative force that further fluctuates between negative
and positive values as the distance increases. We attribute these
initial fluctuations to a net depletion interaction between the
pinned particles due to the amorphous-like structure of the
jammed spheres. Similar phenomenology has been observed in
experiments with colloidal particles.63 To further strengthen
this point, we compare our force values with the result from the

force obtained from the mean force potential, which we calcu-
late using the pair correlation function:64

Fy

� 	
¼ kBT

g0ðrÞ
gðrÞ : (5)

Here we have computed g(r) by computing the probability of
finding two particles with radii 1.4s at a given value of D/R. This
method assumes an equilibrium, thermodynamic system with
temperature T, which defines the fluctuating pathways between
different system configurations. Our system configurations are
obtained through a quench from T = N, thus we scaled the
amplitude of the predicted force from eqn (5) in order to best fit
our experimental curve (Fig. 3b). At this point, the quantitative
meaning of the effective temperature used to scale the amplitude
is unclear, however, the reasonable agreement between the
functional form and the data indicates that the pair distribution
function captures the essential features of hFyi for small values
of D/R. Oscillations in the predicted curve at small values of
D are likely due to the differentiation of discrete data from
measured values of g(r).

At larger distances, however, we find that the average force
does not tend towards zero as we would expect from liquid-like
ordering, rather it remains positive and therefore repulsive.
This is indicative of a long-ranged Casimir component to the
force, such as those that arise in binary mixtures16,19 and in
granular systems.32,38 In order to isolate this component of the
force, we gradually increased the size of the pinned particles
with respect to the jammed particles. For larger values of R/s,
the pinned particles have many neighboring particles and the
net force does not depend as sensitively on the details of the

Fig. 2 (a and b) Components of the mean normalized force between
the two pinned particles for two different values of R/s: (a) R/s = 1.4, and
(b) R/s = 21 (L/s E 235, f = 0.855, Fx &, Fy ’). Each data point is the
average of 200 systems with N = 10 000 particles. PDFs of Fy/(PR) are
shown in panels (c) and (d), which correspond to the points indicated by
the blue arrow in (a) and red arrow in (b).

Fig. 3 (a) Normalized force in the y-direction versus particle separation
for two different system sizes (R/s = 1.4, f = 0.855. N = 1000 &,
N = 10 000 ). Each data point represents the average of 800 systems.
(b) Data with N = 10 000 compared with the prediction from eqn (5).
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local packing structure. However, the Casimir-like force becomes
more prominent. This can be seen in Fig. 4, which shows hFyi
for three different values of R/s, keeping constant the packing
fraction f = 0.89 and the number of particles N = 1000. As R/s
increases, only the positive repulsive force remains, except at
very small surface separations when D/s B 1, at which point
the packing structure of jammed particles in the region
between the pinned particles can strongly influence the mean
force. For larger values of D/R, the force must tend to zero by
the symmetry of the periodic boundary conditions, which can
be seen here for R/s = 8.

3.2 Long-ranged forces: R/r c 1

In order to better understand the Casimir-like component to
the total force, we now turn out attention to systems where
the pinned particles are significantly larger than the jammed
particles (R/sZ 20). For these systems, we performed a detailed
study of the dependence of the Casimir-like force on Df, which
controls the distance to the jamming transition. As we approach
the critical point, we expect both the size and length scale of the
fluctuations to increase.65 In order to obtain systems arbitrarily
close to Df = 0, we began with a system at a high packing fraction,
and slowly decompressed the system and monitored the decreasing
pressure (eqn (2)).

The pressure scales with Dfa�1 as the jamming transition is
approached.45 Systems were initially created at a packing frac-
tion of f = 0.99, and the packing fraction was decreased slowly
in order to obtain a relationship between P and f. During this
process, R was fixed and s was adjusted in order to change the
overall packing fraction. Using Newton’s root-finding method,
we estimated the critical packing fraction where the pressure
reaches zero. At each iteration, we reduced Df by 1/4, then
re-quenched the system, thereby creating a series of packings
ranging from 10�6 o Dfo 0.15. This algorithm had a significant
effect on the Casimir-like force. Systems which are quenched to
the nearest potential energy minimum from T = N can rest in a
rather high energy state. That is, any amount of annealing can
relax the system considerably. This can be seen in Fig. 5, which

shows a series of decompressions and compressions for D/R = 1
and R/s = 21.

We started our systems at f = 0.99 (Df E 0.15), and then
reduced the packing fraction in small steps while monitoring the
net force on the pinned particles. Initially the force drops, and
then begins to increase before reaching a plateau as Df- 0. We
attribute the initial drop in the force to an annealing of the
system during the initial decompression. The force decreases
because free particles in between the two pinned particles are
allowed to rearrange and relax. Upon compressing the system
back again to large values of Df, the force drops monotonically.
Further decompressions and compressions result in the same
qualitative behavior, with the force approaching a steady value
of hFy/(PR)i E 0.23 as Df - 0. Since multiple compressions
and decompressions require significant computing time, data
reported here has been decompressed, then compressed once
(e.g. solid black squares in Fig. 5). Further annealing of the
systems would result in the same quantitative conclusions, just
with smaller overall forces.

Fig. 6a shows that our results are independent of the type of
interaction (the value of a in eqn (1)). The mean force is shown
for both harmonic and Hertzian interactions, with identical
results. We also investigated the sensitivity to the initial place-
ment of free particles prior to the quench. For most data, the
particles were placed randomly, which means they could easily
end up inside the pinned particles, and then get pushed
out during the quench. Alternatively, we also placed the free
particles in a random fashion only on the outside of the pinned
particles. This had the interesting effect of making the mean
force negative (attractive) for large values of Df. This is likely
due to the fact that upon quenching, particles must be pushed
into the region between the pinned particles, resulting in a
lower average density and depletion-like effect. Nevertheless,
upon approach to the jamming transition, the force becomes
repulsive. This is shown in Fig. 6b.

Fig. 4 Normalized force along the y-direction versus particle separation
for different size ratios: (’) R/s = 1.6, ( ) R/s = 4, ( ) R/s = 8. The packing
fraction, f = 0.89, and the number of particles, N = 1000, are constant.
Each data point represents the average of 800 systems.

Fig. 5 Mean force in the y-direction between two pinned particle upon
repeated decompressions and compressions for D/R = 1 and R/s = 21.
Each data point represents the average of 200 systems with N = 10 000
particles each. Starting from Df = 0.15 (&), the systems are decompressed
towards the jamming transition, then re-compressed. The final state of the
system is lowest curve ( ).
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For critical Casimir forces, such as those that arise near
classical critical points, there are two limiting regimes which
have simple scalings in two dimensions for symmetric (Dirichlet)
boundary conditions.17,66 First, in the limit R { D { x, the
Casimir force between two equally-sized particles scales as D�5/4.
In the opposite limit, D { R { x, where the Derjaguin
approximation is valid, the force scales a D�3/2. Thus the Casimir
force may be expected to diverge as D - 0. In practice, this
divergence is limited by the assumption that the critical medium
is a continuum, i.e. these scalings are valid only when D and R
are much larger than the molecular length scale, an assumption
which is violated as D - 0. In our jammed systems, behavior
near D/R - 0 will be significantly affected by the size ratio R/s,
since this determines the degree to which the jammed particles
can be considered a continuum.

For jammed systems, the equivalent limit of x - N

corresponds to Df - 0. Fig. 7 shows the approach to this limit
at various values of particle separation D/R, with R/s = 21. In
contrast to Fig. 5 and 6, data in Fig. 7a is plotted on a linear–
linear scale in order to illustrate the sharp increase in the mean
force near Df = 0. When the pinned particles are touching each
other at D/R = 0, the mean force is negative for large Df. This is
due to the depletion effect, when D/s t 1. However, as Df is
decreased, the force sharply increases and becomes repulsive.

This sharp increase is seen in all the data, but is weaker as the
separation between the pinned particles increases.

Fig. 7b illustrates the relationship between the normalized
mean force and the normalized standard deviation of the force
distributions, such as those shown in Fig. 2c and d. The relation-
ship is always linear, although the slope and intercept vary with
parameters such as D/R. The data indicates that the size of
the fluctuations from system-to-system controls the maximum
possible repulsive force. This is consistent with our expectation
that Casimir-like forces arise from fluctuations in the system,
where the fluctuations here are measured by the standard devia-
tion in the net force over multiple jammed systems.

Fig. 6 (a) Comparison of the normalized force versus Df for
both Harmonic (’) and Hertzian (J) interactions with D/R = 0.4 and
R/s = 21. (b) Data for two sequential sets of decompression and compres-
sion where all free particles are initially placed outside the boundary of
the pinned particles. The order of the events is given by , , , .
All data points represent the average of 200 systems with N = 10 000
particles each.

Fig. 7 (a) Normalized force along the y-direction versus Df for different

surface-to-surface distances: (&)
D

R
¼ 0, ( )

D

R
¼ 0:2, ( )

D

R
¼ 0:4, ( )

D

R
¼ 1, ( )

D

R
¼ 1:4, ( )

D

R
¼ 2:4, ( )

D

R
¼ 3. (b) Force versus the standard

deviation of the force distribution for the data shown in (a). (c) The same
data collapsed onto a universal functional form: hFy/(PR)i =B � ADf1/2.
Each data point represents the average of 200 independent systems with
N = 10 000. The inset shows the fitting parameters A and B for each value
of D/R. For all data, R/s = 21.
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Near Df = 0, all of the data is consistent with a universal
functional form:

Fy

PR

� �
¼ B� ADf1=2: (6)

We fit all data points below Df = 2 � 10�3 to this form to
determine the values of A and B. A collapse of the data can be
seen in Fig. 7c. The data follows a power law with an exponent
of 1/2 over three decades in Df. The noise in the data is likely
due to a finite number of systems used for each data point.
The respective values of the fitting parameters A and B for each
separation distance D/R are shown in the inset. The coefficient
A represents the strength of the power law dependence, and
increases rapidly for small D/R. The exception is when the pinned
particles are touching, where depletion forces are present in
addition to the Casimir-like force. The constant B has a direct
interpretation; it is the limiting value of the force when Df = 0, or
alternatively, when the correlation length x = N. B also shows a
sharp decrease near D/R = 0, for the same reasons described above.

Critical Casimir forces should depend sensitively on the size
of the correlation length x, which diverges near the critical
point.14,15,17,18,26 However, as mentioned previously, the jam-
ming transition resembles a random first-order transition,67

and involves the divergence of multiple length scales, some of
which have only recently been illuminated in detail.51,68 Among
these a longitudinal or rigidity length scale, l*,50,69 related to
the maximum size of a stable cluster within the system, and a
transverse length scale, lT

51, that controls the stability of the
system against transverse plane-wave perturbations, have been
proposed. Both length scales seem to be relevant to control the
stability of the jammed packings but scale differently with Df.
Specifically, l* B sDf�1/2 and lT B sDf�1/4. It is not clear which
one of these length scales is most important for the Casimir effect
in jammed systems. However, given that l* diverges more quickly,
it seems logical that this length scale will play the dominant role.
Thus we associate l* with the correlation length x.

With this in mind, we can write the resulting normalized
force as:

Fy

PR

� �
¼ B� A

cs
l�
; (7)

where c E 0.28 is a numerical constant which has been recently
measured in simulations of 2D frictionless disks.50 In order to
tease apart the dependence of the normalized force on the
remaining dimensionless parameters in eqn (3), we will focus
on the fitting parameters B and A. Both will depend on D/R, R/s,
and R/L. In this case, the ‘‘thermodynamic limit’’ is achieved
when R/s - N and R/L - 0. For large pinned particles, the
limiting values obtained in our simulations are R/s E 21, 26,
32 and R/L = 0.083, 0.105, 0.13. These parameters are coupled
together because the ratio L/s is nearly constant for our
simulations due to the fixed number of particles (N = 10 000).
Both of these parameters represent a finite-size effect that
can not be ignored. However, by varying the separation D/R,
we can accurately determine the distance-dependence of the
Casimir effect.

We are able to obtain a reasonable collapse of the data
by plotting B(R/L)1/2 and A(R/L)3/4 versus D/D*, where D* is the
separation at which the force must go to zero due to the
symmetry of the periodic boundary conditions (eqn (4)).
The data collapse is shown in Fig. 8a and b. The collapse is
poor for smaller values of D/D* because this is where D/so 5. The
scaling exponents 1/2 (B) and 3/4 (A) are a natural consequence of
the dependence on D. If we plot the data on a logarithmic scale
(insets in Fig. 8), we see that there is a small region where data is
consistent with a power-law, bracketed on both sides by finite size
effects which cause the data to deviate from the scaling behavior.
By fitting the data in this regime, we find exponents in good
agreement with the scaling obtained by collapsing the data. These
fits are shown by the dashed lines in Fig. 8a and b.

Thus in this intermediate regime, where the finite-size
effects are not dominant, we find:

Fy

PR

� �
� 0:66

D�R

DL

� �1=2

� 1:66
D�R

DL

� �3=4
cs
l�
; (8)

In the limit R/L - 0, the distance D* - L, and eqn (8) becomes

Fy

PR

� �
� 0:66

R

D

� �1=2

� 0:47
R

D

� �3=4s
l�
; (9)

where we have used the numerical value for c. Conveniently, as
the system size L - N, its dependence drops out of the
expression for the force. Although our range of data is not very
large, we may say that it is consistent with eqn (9), which gives
us some expectation for the dependence of the force on the
particle separation when finite-size effects are negligible.

Fig. 8 Normalized fitting parameters B(L/R)1/2 (a) and A(L/R)3/4 (b) versus
D/D*, as defined in eqn (4). Data is shown for three different values of R/s:
R/s = 21 ( ), R/s = 26 ( ), and R/s = 32 (K). Open symbols are used in (b).
The insets show the same data on a logarithmic scale. The dashed lines
correspond to fits to the data where D/s 4 3.5 and D/D* o 6: B(R/L)1/2 E
0.66(D*/D)0.50�0.04 and A(R/L)3/4 E 1.66(D*/D)0.78�0.05.
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The scaling of critical Casimir forces is often broken into two
regimes where D { R (Derjaguin) and D c R.17 In both cases,
the force will scale as F p (R/D)by(D/x), where the exponent b
and the function y are different in each regime. The universal
dependence on D/x is a defining feature of traditional Casimir
forces.16 Eqn (9) is not consistent with this form, so it is unclear
if the Casimir-like force between the pinned particles is directly
related to quantum or critical Casimir forces. However, as we
show in the next section, one of the controlling parameters
for both the sign and size of all Casimir forces, namely, the
boundary condition at the confining surfaces, varies significantly
in jammed systems as the critical point is approached. This is in
contrast to the most well-studied examples of critical Casimir
forces: binary liquid mixtures near a critical point. Although the
correlation length diverges as the temperature approaches the
critical point, the hydrophilicity/hydrophobicity of the confining
surfaces remains constant. This is perhaps the most important
distinction between Casimir-like forces in jammed systems and
traditional Casimir forces.

3.3 Origin of the Casimir force

The length scale l* determines the maximum size of a rigid
cluster with no mechanical constraints at the boundaries.50

This argument is essentially based on balancing the excess
number of contacts within a volume of jammed particles with
the number of contacts lost at the free boundaries. At Df = 0,
frictionless, jammed systems are isostatic, so there are exactly
enough contacts to constrain the degrees of freedom, so l* -N,
meaning that if one contact is broken then the whole system
falls apart. Phenomenologically, this is consistent with our
simulations. For large volume fractions when l* o D, a rigid
cluster can exist in between the pinned particles, so that it
need not interact with the boundaries of the pinned particles
to maintain a force balance. However, as l* - N (Df - 0), the
cluster can not maintain its rigidity without interacting with the
boundaries of the pinned particles.

The type of interaction will depend on the boundary condi-
tions for the fluctuating fields in the system, as is the case in
quantum and critical Casimir forces. In the case of critical
Casimir forces in binary liquid mixtures near a critical point,
the Casimir force can be positive or negative depending on
the preference of each phase to be adjacent to the solid
boundary, in effect, the hydrophobicity of the boundary.19 As
we will show using an alteration to the standard Maxwell
counting argument for particle contacts, pinned particles in
jammed systems require a reduction in the mean contact
number per particle, hzi.

Let’s begin by assuming an isostatic (Df = 0), jammed system
contains N free particles and m identical pinned particles. Then
there are Nd degrees of freedom, where d is the dimension of
the system. This must be equal to the number of constraints,
or contacts. In the bulk, there are zbulk contacts between
free particles, and zbound contacts between free and pinned
particles. We are assuming that the pinned particles are sparse,
and do not touch. Thus Nd = zbulk + zbound. We also assume that
each contact zbound represents a single free particle in contact

with a single pinned particle, so zbound = Nbound, where Nbound

is the number of free particles in contact with the boundary of a
pinned particle.

The mean number of contacts for the N particles is given
by hzi = (2zbulk + zbound)/N. The factor of 2 accounts for the fact
that each bulk contact is shared between two free particles, but
bound contacts are not. Thus we find that with the addition of
m pinned particles, the coordination number becomes

hzi ¼ 2d �Nbound

N
: (10)

Thus the mean contact number is reduced by an amount
Nbound/N. Far away from a pinned particle, we might expect
the bulk system to behave like any other jammed system, so the
local mean contact number would be 2d. For simplicity, let’s
assume that this reduction in mean contact number is a result
of a surface of particles surrounding each pinned particle
which has, on average, less contacts than particles in the bulk.
We can estimate the thickness of this surface layer in the
following way. Instead of being evenly distributed throughout
the bulk, this mean contact number reduction will be confined
to a layer of thickness DR, which surrounds m pinned particles.
In two dimensions, the reduction in contact number in this
layer, hzilayer, will be given by total reduction in hzimultiplied by
the ratio of the total area of the system to the fraction of area
included in the localized layers:

hzilayer ¼ 4�Nbound

N
� L2 �mpR2

mpðRþ DRÞ2 �mpR2
: (11)

The area of the total bulk system is reduced by an amount
mpR2 due to the presence of the m pinned particles. When
Casimir-like forces are dominant, i.e. R/sc 1, we can assume that
the boundary of the pinned particles is completely surrounded
with free particles, so that Nbound E 2pRm/(2s). In addition, at
jamming, the system size and particle number are related
through the critical packing fraction: L2 � mpR2 E Nps2/fc,
where fc E 0.84. Thus hzilayer becomes

hzilayer ¼ 4�
p
s
R

fc

DR
R

2þ DR2

R2

� � (12)

In the absence of pinned particles, hzilayer = 2d = 4. However,
particles need a minimum of d � 1 = 3 contacts for stability.
Thus we expect 3 o hzilayer o 4. Near jamming for R/s = 32,
we find that hzilayer E 3.8. Using eqn (12), this suggests that
DR E 4.4s. Thus the thickness of this region of reduced contact
number is expected to be a few particles thick. We note that the
thickness of the layer is independent of system size (L) and the
number of pinned particles (m).

Confirmation of this prediction can been seen in Fig. 9. Near
jamming, when Df is small, the mean contact number in the
bulk of the system should be hzi = 2d. This is the case far away
from the pinned particles, where s/s c 1, and s is the distance
between the center of a free particle and the boundary of a pinned
particle. Near the boundary of the pinned particles, hzi deviates
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from this value. The mean contact number decreases to d � 1 = 3
at the boundary, which occurs over a few particle radii, as
predicted by eqn (12). This reduction in hzi near the boundary is
also true at higher packing fractions, although hzi is larger since
there are excess contacts in systems far from the jamming point.45

Although not shown here, this argument can easily be extended to
higher dimensions to obtain similar results by considering the
volume of a shell around a d-dimensional sphere.

The jamming transition is not a 2nd-order phase transition,
yet it shares many similarities. There is no clear choice for a two-
point static correlation function from which a growing length
scale can be derived.70 Although many quantities have been
considered as order parameters for the T = 0 jamming transition,
such as geometric properties of Voronoi tessellations71 and point-
to-set correlations,72 the number of excess contacts, hzi � 2d, is
often considered an order parameter for the system.43 This is due
to its universal scaling near the jamming transition for d Z 2:
hzi � 2d p Df1/2. The local contact number is significantly
reduced at the boundary, meaning that particles with less con-
tacts on average will be drawn to the region between the pinned
particles. However, if this region of reduced contact number is
to stay in mechanical equilibrium with the rest of the system,

the contacts should, on average, be stronger than contacts in
the bulk of the system. This is the essential reason why the
Casimir-like force is strictly positive. The boundary condition
requiring a reduced number of contacts necessitates an increased
strength per contact. These stronger contact forces are trans-
mitted to the boundaries of the pinned particles, where they push
them apart, resulting in a repulsive force.

To solidify the link between reduced contact number and
stronger forces, in Fig. 10 we plot the probability density
functions (PDFs) of the average force per contact on a single
particle with z contacts:

fzh ii¼
1

z

Xz
j¼1

fij ; (13)

where fij is the magnitude of the contact force between particles
i and j, and z denotes the number of contacts for particle i.

Fig. 9 (a and b) Coarse-grained color map of the mean contact number per
particle, hzi, around an isolated pinned particle. Data is shown for R/s = 32
and D/R = 1.9, and for two different packing fractions: (a) Df = 10�5,
and (b) Df = 0.15. The data is averaged over 200 independent systems with
N = 10 000 particles each. (c) Plot of hzi, averaged around the perimeter of
the pinned particle, versus the normalized distance, s/s, from boundary of
the pinned particles. Data is shown for Df = 10�5 (blue line), and Df = 0.15
(red line). For both low and high packing fractions, hzi is reduced near the
boundary of the pinned particles. Large variations near s/s = 0 are due to
structural layering of particles at the boundary.

Fig. 10 PDFs of the mean contact force for particles with different
contact numbers. The data comes from systems with no pinned
particles, and is averaged over 200 systems with N = 10 000 particles
each. (a) Df = 10�5. (b) Df = 0.15.
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The forces are normalized by the mean contact force on all
particles in the system:

fNh i ¼ 1

N

XN
i¼1

fzh ii: (14)

We separate the PDF for all particles into separate curves for
z = 3, 4, 5, 6, and 7 contacts. Fig. 10a shows data near the
jamming transition. With this normalization, the total area
under all the curves in Fig. 10 is slightly less than unity since we
have not considered z = 8 and larger, which represents a very
small fraction of the particles in the systems. An important
feature to notice is that particles with the strongest contact
forces only have 3 contacts. This may be expected given that
these particles are in mechanical equilibrium with the rest of the
system, they need stronger forces if they have fewer contacts.
Fig. 10b shows the same PDFs at Df = 0.15, far from the
jamming transition. For this value of Df, hzi E 5.37, the same
as the data in Fig. 9. The distributions are more narrow
with rapidly decreasing tails for strong forces, and particles with
hzi = 4 and 5 contacts dominate the strongest forces. It is important
to note that these distributions are taken from systems with no
pinned particles, although they change very little from distribu-
tions in the presence of pinned particles.

As stated above, the strongest forces should be localized to
the region between the pinned particles. In order to visualize
this localization, we look for where the particles with the
strongest average contact force are located. Fig. 11 shows the
strongest 0.625% of particles for 200 independent systems for
two different values of Df, corresponding to Fig. 10, as well as
different values of D/R. At Df = 10�5 (panels a–c), the data
represents particles with h fzi/h fNi\ 2.8, which mostly consists
of particles with z = 3 contacts. We find that there is a clear
tendency for strong forces to localize in between the pinned
particles, especially when the pinned particles are close. This
average localization gives rise to the repulsive Casimir effect,
which is prominent near jamming. When Df = 0.15, there are
strong forces localized to the immediate boundary of the
pinned particles, but this localization does not extend far into
the region between the particles. The points shown in panels
d–f correspond to h fzi/h fNi \ 1.6, where the forces are domi-
nated by particles with z = 4, 5, and 6 contacts. The net effect of
this clustering can be seen in Fig. 12, which shows a color map
of h fzi for closely-spaced particles. Near the jamming transition
(Fig. 12a), the average contact force in between the particles can
be more than 2 standard deviations away from the mean force
in the system. This deviation is significantly reduced for larger
packing fractions, i.e. far from the jamming transition.

Fig. 11 Locations of the top 0.625% of particles with the strongest average contact forces (hfzi). For each panel, data is shown for 200 independent systems
with N = 10 000 and R/s = 32. (a–c) Three different values of D/R (1.6, 0.8, 0.4) with Df = 10�5. (d–f) The same particle separations with Df = 0.15.
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Taken together, we interpret the data from Fig. 10–12 in the
following way. Fluctuations in the particle contact number and
contact strength occur throughout the bulk, and are larger near
jamming, given that the length scale l* diverges50,69 and the
PDFs in Fig. 10 have long tails. The spectrum of fluctuations
must be consistent with the boundary condition at the pinned
particles. The fixed boundaries of the pinned particles produce
a reduction in the mean number of contacts per particle, hzi.
We find that this reduction is localized near the boundary of
the pinned particles. As two pinned particles approach one
another, the localized layers of reduced hzi begin to overlap,
resulting in a repulsive interaction due to stronger contacts for
particles with z = 3 and z = 4. However, the amplitude of this
reduction has an upper bound: hzi can not drop below 3
contacts per particle in order to maintain rigidity. Thus, near
jamming, the reduction in contact number is spread over a longer
distance, i.e. the layer near the boundary is thicker. At larger
packing fractions, hzi is larger on average, which allows for a
sharper decrease in hzi near the boundary, and a thinner inter-
action range for the Casimir effect. Essentially, the excess contacts
screen the interaction between the pinned particles.

One important question suggested by our results, and in
particular by Fig. 9, is what happens when the pinned particles
are allowed to relax with the rest of the system? How would this
reduction in contact number near the surface change? We have
tested this by allowing the pinned particles to relax to a zero
net force, starting from a condition where they were initially
pinned. On average, the pinned particles always move further
apart due to the repulsive Casimir-like force, before reaching an
equilibrium state (zero net force). However, when R/s c 1, the
contact number distribution near the boundary is still identical
to that of Fig. 9. This is essentially because eqn (10) does not
require that the particles be pinned. We can see this by
considering that large particles immersed in a sea of smaller
particles give rise to many contacts (Nbound), yet they only bring
d degrees of freedom per particle to the counting statistics. In
this case, where the m pinned particles are allowed to move, we
arrive a different expression for the average contact number
in the bulk:

hzi ¼ 2d �Nbound

N
þ 2dm

N
: (15)

If R/s c 1, so that each large particle has many smaller
particles in contact with it boundary (Nbound c m), eqn (15)
reduces to eqn (10). If the m particles are the same size as the
rest of the jammed particles, then they have the same number
of average contacts as any other particle (Nbound = hzim), and
eqn (15) reduces to hzi = 2d. Thus, there will be a reduction in
the number of contacts, which is still localized to the boundary
of the large particles, even if the pinned particles are allow
to move.

This idea can be seen in Fig. 13, which shows an idealization of
the potential energy landscape which may be associated with the
separation of the large, pinned particles. In general, increasing
the separation will decrease the potential energy, so that
the ensemble average force between the pinned particles is
always repulsive. However, for a single system, if the pinned
particles are allowed to relax, they can be quenched to a small,
local potential energy minimum. Given some type of excitation,
perhaps thermal or an external vibration of the system, the
larger particles can escape this local minimum and continue to
move further apart. In jammed systems, our results imply that
large particles will always tend to move away from each other,
or from the fixed boundaries of the system. This may have
important implications for the well-known Brazil nut effect,
where the largest particles in a system end up near the free
surface (away from the bottom boundary of the container) in a
driven, granular system.

It is unclear at this point how these results may be related
to numerous studies investigating the force on an intruder in
a granular medium.73–77 In particular, Stone et al. measure a
sharp increase in the total force on an intruder approaching a
solid wall. They find that the force is repulsive and depends
exponentially on the distance from the wall. A direct compar-
ison of our data with the experiment is complicated by particle–
particle, particle–wall, and particle–intruder friction, as well as
the free surface of the granular bed, all of which have a potent
effect on the experimental measurements. In addition, in our
simulations, the force for each value of D is measured by fixing
D, then quenching the smaller mobile particles. Since we have
shown that the preparation of the jammed packing can affect

Fig. 12 Coarse-grained map of hfzi for D/R = 0.4 with Df = 10�5 (a) and
Df = 0.15 (b). The data is averaged over 200 independent systems with
N = 10 000 and R/s = 32. The colors represent mean force (orange) and
number of standard deviations, d, from the mean force.

Fig. 13 Schematic of the potential energy landscape associated with the
position of the large, pinned particles.
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the force, we may expect different results if we first quenched the
mobile particles at a large value of D, then slowly brought the
pinned particles together. We hope to address these questions in
future work.

4 Conclusions

The jamming transition has been investigated for nearly two
decades. We now know that it is a unique example of a random
first order transition, and shares similarities with the glass
transition. It shares properties with both first and second order
phase transitions, such as a finite jump in the order parameter,
power law scaling of system properties, diverging correlation
lengths, and strong fluctuations near the critical point (Df = 0).
The latter two are the main ingredients necessary for macro-
scopic Casimir forces. Here we have shown how Casimir-like
forces arise between two pinned particles in an ambient jammed
system of frictionless particles. This force is an ensemble average
over many realizations of jammed packings. When the pinned
particles are small, they experience sharp fluctuations in their
interaction force due to the local structure of the packing, as
defined by the pair distribution function. However, at large
separations, the particles still retain a small repulsive force.

When the pinned particles are much larger than the ambient
jammed particles, the long-ranged Casimir-like force is dominant,
and is purely repulsive. Near jamming, the Casimir-like force
obeys a universal scaling law, A� BDf1/2, however the exact values
of A and B depend on the preparation of the system. Although we
do not currently have an explanation for the exponent value, 1/2,
we suspect that this is related to the well-known 1/2 exponent seen
in the behavior of the number of excess contacts versus Df
since the origin of the Casimir effect stems from fluctuations
in contact number. The force also depends on the distance
between the pinned particles, and is proportional to (R/D)1/2 at
the jamming transition (eqn (9)). The repulsive nature of the
force and its increased magnitude at short distances can be
explained by the confinement of contact number fluctuations.
The boundary of the pinned particles requires a decrease in the
mean contact number. Regions of particles with fewer contacts
have stronger contacts on average, giving rise to an increase in
pressure between the pinned particles.

Casimir forces are intimately connected to system fluctuations.
Both quantum and thermal fluctuations are easier to define,
whereas ensembles of jammed systems depend on the user
protocol for generating them. This makes any attempt at an
analytic theory more complicated, however, we speculate that
the Casimir effect in jammed systems may be intimately related
to those found in other nonequilibrium systems.30–42 Thus we
do not expect Casimir-like forces near the jamming transition
to follow the same scaling as quantum or critical Casimir
forces. Unlike classical critical behavior, the jamming transi-
tion is a rare example of a random first-order transition which
involves two equally-important diverging length scales, and the
boundary condition at interfaces (contact number and contact
strength) vary as Df - 0. Nevertheless, there may be some

similarities with traditional Casimir forces. The correlation
length l* is associated with the onset of floppy modes which
have been shifted upwards in frequency when Df 4 0.43 Near
jamming, the excess low-frequency modes may serve the same
role as Goldstone bosons generated by symmetry breaking
in critical Casimir forces. In order to verify this potential
hypothesis and fully map out the scaling dependencies of the
Casimir-like force on the particle separation, radius, and system
size, a more extensive set of simulations would be necessary with
many more jammed particles (N c 10 000).

Although our simulations are strictly two-dimensional, eqn (12)
can be derived in any dimension, given knowledge of the critical
packing fraction fc. Thus we expect our results to be qualitatively
valid in three dimensions, although the exact dependence on
parameters such as D/R may change. It also remains to be seen
how these results extend to finite temperature, especially since a
full understanding of the jamming transition at finite temperature
is complex, and a subject of active research.78–80 Fig. 5 would
suggest that even upon some form of annealing, the Casimir effect
still remains. Also, Fig. 13 suggests that if the large particles are
allowed to move, then they would continue to move farther
apart until the system can not escape from a local minimum.
We leave these questions open for further study.

Finally, the addition of friction may play a crucial role in the
behavior of the Casimir effect, since it strongly affects the average
contact number per particle.81 Generically, there are still excess
contacts above the jamming transition in frictional systems,
which would act to ‘‘screen’’ the Casimir-like force, as shown in
Fig. 11. We suspect that a repulsive, Casimir-like force would still
dominate near jamming, although it is unclear if the universal
behaviors would remain since the jamming transition is more
well-defined in the absence of friction.59 Although simulations
allow precise control over the particle interaction and ensemble
generation, it remains to be seen if these ideas can be experi-
mentally observed. Our lab is currently developing a series of
ongoing experiments to test these theoretical predictions.
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