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Equation (12) was used to find the curves shown 
in Fig. 1. 

The rate expression involving the acid chro
mate ion is 

-d(Cr03)/dt 
= k(HCr04-) (CH 3CHOHCH3) (H+)2. (6) 

The concentration of acid chromate ion can be 
calculated from the equilibrium expression 

where the parentheses indicate concentrations, 

not activities. Using the notation defined above, 

-K' +[K'2+8K'(b-x)]! 
(HCr04-) =---------

4 

The integrated rate equation becomes 

(13) 

1 f"' _______ d_x ______ _ 

6 Jo (a-x)(c-x)2[ -K'+K'2+8K'(b-x)]' 
=kt. (14) 

The indicated integration was performed graph
ically. 
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A model is proposed for the structure of a cross-linked network, such as exists in a vulcanized 
rubber, which is amenable to statistical treatment. Expressions are derived for the structural 
entropy of the network, and for the entropy change on deformation. The latter is in agreement 
with the relationship derived by Wall and others by a different treatment. 

I T has been adequately demonstrated that the 
elastic retractive forces in rubber and rubber

like materials arise principally from the decrease 
in entropy accompanying deformation.2.3 Only 
at high degrees of elongation, where crystalliza
tion may occur to a considerable degree, does the 
term (atJ.H/aLh assume a magnitude com
parable with T(atJ.S/aLh, L being the length of 
the sample in the direction of stretch. Hence, to 
an approximation which is good except for large 
deformations the retractive force is given by 

f= (atJ.F/aL)T""- T(atJ.S/aL)T. (1) 

1 A preliminary account of the work presented in this and 
the following paper was presented before the New York 
Academy of Sciences Conference on High Polymers, 
January 9, 1943. 

2 K. H. Meyer and C. Ferri, Helv. Chim. Acta 18, 570 
(1935); D. S. Ornstein, J. Wouda, and J. G. Eymers, Proc. 
Akad. Wetensch. Arnst. 33, 273 (1930); V. Hauk and W. 
Neumann, Zeits. f. physik. Chemie A182, 285 (1938); E. 
Guth, J. Phys. Chern. 46,826 (1942). 

3 L. R. G. Treloar, Trans. Faraday Soc. 38, 293 (1942). 

From the standpoint of polymer structure, a 
vulcanized rubber consists of a three-dimensional 
network composed of very long rubber molecules 
laterally attached to one another at occasional 
points along their lengths. The cross-linkages 
may consist of primary valence bonds connecting 
the chains directly, or of an intermediate group 
or atom such as sulfur which is bonded to each 
of the two chains. The precise nature of the 
cross-linkage is relatively unimportant here, 
aside from the stipulation that it be of a per
manent nature. In the course of the cross-linking 
process (vulcanization) the original long polymer 
molecules can be considered to lose their identity, 
and there emerges a single giant network struc
ture, the basic elements of which are the portions 
of the molecules reaching from one cross-linkage 
to the next. This basic element will be called a 
chain. (The term "chain" will not be applied to 
the long polymer molecules from which the net
work is formed.) 
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The cross-linkages bestow a degree of per
manence on the network structure; the mid
portion of a chain is free to assume many con
figurations, but each end of the chain is con
strained to join the ends of three other chains at 
the cross-linkage. When deformation occurs, the 
cross-linkages are shifted to new positions relative 
to one another in a manner paralleling the macro
scopic deformation. Consequently the "displace
ment lengths" of the chains, i.e., the lengths of 
the vectors connecting the ends of the chains, 
are altered from their equilibrium distribution in 
the undeformed state. Since it may be assumed 
that the chains occupy most probable configura
tions in the undeformed state, deformation of the 
network forces them to assume less probable 
configurations; hence, the entropy decreases with 
deformation.4 

Quantitative treatments of this problem have 
been based on the following expression derived 
by Guth and Mark5 and by Kuhn 6 for the prob
ability of a displacement length r. 

W(r )dr = (4(33 /n.l) exp (~ff2r2)r2dr. (2) 

Or, expressing r in rectangular coordinates 

W(xyz)dxdydz = (j33/ 11"1) 
Xexp [_j32(X2+y2+Z2)Jdxdydz. (2') 

j3, the reciprocal of the most probable value of r, 
is dependent upon the contour length of the 
chain and its flexibility. If the chain possesses 
bonds about which there is only limited rotation, 
restricted perhaps by sterically interfering sub
stituents, Kuhn has pointed out that its con
figurations in space may be replaced approxi
mately by those assumed by a chain of the same 
contour length having a fewer number of bonds 
about which rotation is unhindered. These bonds 
will occur at correspondingly greater intervals 
along this chain of equivalent flexibility. For a 
chain containing Z bonds located at intervals of 
length l along the chain, successive segments of 
which meet at tetrahedral angles5

-
7 

(3) 

4 K. H. Meyer, G. von Susich, and E. Valko, Kolloid 
Zeits. 59, 208 (1932). 

6 E. Guth and H. Mark, Monats. 65, 63 (1934). 
6 W. Kuhn, Kolloid Zeits. 68, 2 (1934). 
7 H. Eyring, Phys. Rev. 39, 746 (1932). 

In deriving the modulus of elasticity of a 
rubber from (2), Kuhn 8 introduced the funda
mental assumption that the deformation trans
forms the chain displacement lengths like 
macroscopic elemen ts of a homogeneous iso
tropic medium. Thus, elongation of the sample 
in the z direction to a relative length a times the 
initial length is assumed to increase the z com
ponen t of the chain displacement vector r 
(which connects one end of the chain with the 
other) by the factor a; since there is no appreciable 
change in volume, the x and y components are 
assumed to be decreased by the factor 1/ a!. 

Kuhn proceeded to apply his treatment to a 
system of independent molecular units whose 
dimensions were presumed to be restricted not 
only in the direction of r, but in the directions 
perpendicular to r, as well. He obtained for the 
modulus of elasticity at small deformations 

E=7(v/V)kT, 

where v is the number of chains in the volume V. 
Recognition of the fact that in the network 
structure of a vulcanized rubber the "molecular 
unit" is the chain discussed above, and that only 
the ends of the chains are subject to constraints 
which depend on the degree of deformation, leads 
by the same procedure to 

E=3(v/V)kT=3RTp/Mc, (4) 

where p is the density of rubber and Me is the 
molecular weight of the chain. 

Recently Wa1l 9 has shown by an improved 
mathematical treatment, based on Kuhn's funda
mental assumption stated above, that the re
tractive force at any elongation is given by 

where Ao is the initial cross-sectional area. Or, 
for the modulus of elasticity 

(6) 

which reduces to (4) for small deformations. 
These same equations have been derived by 
Treloarlo by an accurate reduction of Kuhn's 
equations. ll 

8 W. Kuhn, Kolloid Zeits. 76, 258 (1936). 
9 F. T. Wall, J. Chern. Phys. 10,485 (1942). 
10 L. R. G. Treloar, Trans. Faraday Soc. 39, 36 (1943). 
11 Similar relationships have been derived by Guth and 

James. Full details of their treatment have only appeared 
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In postulating that the distribution of chain 
displacement lengths is transformed by the 
deformation in the simple manner assumed in the 
Kuhn-Wall treatment, the chains are treated 
essentially as independent elements transformed 
by the deformation. The interdependence of 
mutually connected chains is not specifically 
taken into account. In the treatment which we 
present here the introduction of an idealized 
network model obviates the basic assumption 
employed by Kuhn and Wall concerning the 
transformation of the chain displacement lengths 
during deformation. While we do not suggest 
that our treatment of deformations is preferable 
to those discussed above, it offers certain ad
vantages in the treatment of swelling phenomena 
discussed in the following paper.12 

THE MODEL AND ASSOCIATED 
ASSUMPTIONS 

We consider a process whereby a three-dimen
sional network structure is formed by the 
introduction of occasional cross-linkages between 
very long polymer molecules. If, as ordinarily 
will be the case, the cross-linkages are introduced 
at random into the mass of randomly entangled 
molecules the distribution of chain contour 
lengths will be given byl3 

N i=Np(l-p)i-l, (7) 

the chain element of the network being defined 
as above. Here Ni is the number of chains com
posed of i units, N is the total number of chains 
in the network, and p is the probability that any 
particular chain unit (e.g., C5Hs in rubber) is 
cross-linked. 

It can be imagined that the points at which 
cross-linking is destined to occur have been 
labeled before vulcanization. The chains so 
defined are free to assume any physically acces
sible configuration. Not only will the contour 
lengths i of the chains vary, in accordance with 
(7), but their displacement lengths r will exhibit 
further variation. The displacement lengths of 

after submission of this manuscript: H. M. James and E. 
Guth, J. Chern. Phys. 11,455 (1943). See also E. Guth and 
H. M. James, Ind. Eng. Chern. 33, 624 (1941); 34, 1365 
(1942). 

12 P. J. Flory and J. Rehner, Jr., J. Chern. Phys. 11, 521 
(1943). 

13 P. J. Flory, J. Am. Chern. Soc. 58, 1877 (1936). 

chains containing i units will be distributed 
about a root-mean-square r value in the manner 
described by Eq. (2). If we imagine that the 
cross-linkages are introduced instantaneously 
at the labeled points, the chain irregularity exist
ing before cross-linking will be carried over into 
the network structure. The important difference 
between the vulcanized and the unvulcanized 
states may be set forth as follows. Each chain, 
which prior to vulcanization is designated as the 
molecular portion between two labeled points, 
can be characterized by the vector r leading from 
one end of the chain to the other. Before vul
canization these vectors are entirely independent 
of one another; the directions they may assume 
are unrestricted and their lengths are inde
pendently distributed according to Eq. (1). After 
vulcanization, neither the length nor the direction 
of one of these vectors can be altered without 
affecting adjacently connected vectors. 

In the analysis presented here, attention is 
focused on the points of cross-linkage rather than 
on the chains themselves. The cross-linkages may 
be regarded as centers of tetrafunctionality since 
the ends of four chains meet at each of these 
points. Surrounding a given cross-linkage there 
are four "nearest neighbor" cross-linkages at the 
other ends of the four chains meeting at the given 
central cross-linkage. These "nearest neighbor" 
cross-linkages will not, in general, be nearest in 
space; they are the nearest only with reference 
to the continuous network structure. The cross
linkages are not bound to fixed posi tions; they 
may diffuse through limited regions of the space. 
This is a consequence of the multiplicity of con
figurations which each chain may assume through 
bond rotations. However, displacements of the 
order of magnitude of the mean chain displace
ment length or greater are very improbable. 
They can be achieved only by imposing highly 
improbable displacement lengths on a few of the 
neighboring chains of the network, or by impos
ing slightly improbable displacement lengths on 
a great many chains including those more dis
tantly removed. Thus, most probable configura
tions may be assigned to the nearest neighbor 
cross-linkages about a given cr,?ss-linkage. These 
four points will lie at the corners of a tetrahedron, 
which will be an irregular tetrahedron since the 
lengths of the four chains will differ. 
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In the treatment given here we have introduced 
the following assumptions and approximations: 

(1) That the actual network can be replaced 
by one in which all of the chains are of the same 
contour length. Under this assumption, the most 
probable positions for the junctions surrounding 
a given cross-linkage may be assumed on the 
average to lie at the corners of a regular tetra
hedron. 

(2) That the properties of the network can be 
computed from those of this average "cell." 

A 

D 

B 

c 
FIG. 1. Model for the elementary tetrahedral cell of 

tetra functional three-dimensional network. 

(3) That the actual restraints imposed by the 
network on a given cross-linkage can be replaced 
by those obtained on fixing its nearest neighbor 
cross-linkages at their most probable average 
positions, i.e., by fixing the nearest neighbor 
cross-linkages at the corners of a regular tetra
hedron. 

(4) Finally, the distribution function [Eq. 
(2) ] is assumed to apply to the independent 
chains prior to vulcanization. Validity of this 
assumption requires that the chains be long 
enough for Eq. (2) to be applicable with sufficient 
accuracy. 

In introducing the concept of a regular tetra
hedral "cell" as a representative unit of the 
network structure, it must be made clear that 
these cells are not mutually exclusive so far as 
occupancy of the space is concerned. Various 
tetrahedra, distantly connected along the net
work structure, will interpenetrate the same 

region of space. This interpenetration which, 
fundamentally, is the result of the random inter
twining of the chains must exist to the extent 
that within a single tetrahedron there will be 
many cross-linkages belonging to other tetra
hedra. Consequently, it is impossible to conceive 
of a continuous array of regular tetrahedra such 
as occurs in the diamond lattice. The regular 
tetrahedral cell is introduced only as an average 
represen ta ti ve cell. 

The average cell is shown in Fig. 1. The most 
probable positions of the four nearest neighbor 
cross-linkages lie at the corners A, B, C, and D 
of the tetrahedron. In accordance with assump
tion (3) these are considered to be fixed points. 
The four chains extending from A, B, C, and D 
to the central junction at P are indicated by 
wavy lines. (Their actual configurations will be 
much more irregular than is indicated by these 
lines.) The point P can occupy numerous posi
tions, but points far from the center 0 of the 
tetrahedron can be occupied only by extending 
some (or all) of the four chains to improbable 
displacement lengths. 

STRUCTURAL ENTROPY OF NETWORK 
FORMATION 

We consider first the process of construction of 
the idealized network discussed above from v 
separate chains, instead of from a number of 
linear molecules of great length, each of which 
contains many chains. This process of network 
formation from separate chains can be divided 
into two steps represented schematically as 
follows: 

(A) v- +v/4 "cross-linkages" ~ v/4-1-' 

where each straight line segment represents a 
chain and v is the total number of chains. The 
"nuclei" resulting from step (A) then combine 
with one another, as indicated in the next step, 
the additional 11/4 cross-linkages combining the 
unattached chain ends to form the final network 
structure. 

(B) 11/4 -t- +11/4 "cross-linkages" 

~ final network. 

Next we consider the formation, from the chains, 
of long polymer molecules such as are actually 
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presumed to be present prior to the introduction 
of cross-linkages (i.e., prior to vulcanization). 
This may be represented by 

(C) - ~ ----, etc. 

The resultant of (A)+(B)-(C) represents the 
cross-linking process with which we are primarily 
concerned. 

In step (A) three chains are constrained to 
meet within a volume element ~T located at the 
end of a fourth chain. The size of ~T will be 
dictated by the chemical structure of the cross
linkage, bond rigidities, etc.; ~T will be inde
pendent of deformation. The probability that 
the chains group themselves in this manner is 

where V is the total volume of the system. The 
factor 2' is included in consideration of the 
identity of the two ends of each chain. 

Step (A) requires also that the 1'/4 cross
linkages be arranged in the vicinity of "lattice 
points" corresponding to the corners of the ulti
mate tetrahedral "cells" of the network. Hence, 
the additional factor (~T'/V)v/4 is required, 
where ~T' is the size of the volume element to 
which each junction is assigned. Furthermore, in 
anticipation of step (B), we consider here the 
degeneracy in the orientations of the group of 
four chains which meets at each cross-linkage. 
There are twelve ways in which each of these 
groups may associate with its four neighboring 
junctions to be formed in step (B). For the prob
ability of step (A) we write, therefore 

(8) 

For the entropy change, we obtain upon intro
ducing Stirling's approximations 

ASA=k In WA=kP[ln (I'/V)-1 
+(3/4) In (2~T)+(1/4) In ~T'J. (9) 

Having arranged 1'/4 cross-linkages at the 
corners of 1'/4 tetrahedral cells, step (B) involves 
the junction within each tetrahedron of the ends 
of four chains emanating from the corners of the 
tetrahedron. The probability that four such chain 
ends would meet spontaneously within the same 
volume element ~T=dx dy dz (~T being defined 

~s above) of an average cell (regular tetraqedron) 
IS 

4 

o (xyz) (dx dy dZ)4 = II W(XiYiZi)dxidy,azi, 
i=l 

where Xi, Yi, Zi, etc., are the coordinates of the 
same volume element ~T referred, respectively, 
to the four corners A, B, C, D, of the tetrahedron 
(see Fig. 1), and X, y, and Z are coordinates of 
the volume element referred to the center 0 of 
the tetrahedron. On substituting for W from 
Eq. (2') 

4 

O(xyz) = (,612/71"6) exp [ _(32 L rn. (10) 
i=l 

In Appendix I it is shown that for the unde
formed network, i.e., for a regular tetrahedral 
"cell " 

4 

L rl=4(s2+X2), (11) 
i.-I 

where 

X, y, and Z being referred to 0, and X is the dis
tance AO from the center of the tetrahedron to 
one corner. The probability that all four chains 
terminate in the same volume element located 
any place becomes 

OO(~T)3 = [f O(XYZ)~T ]c~T)3 

= (4{312/7I"6){iOOexp [_4{32(X2+S2)JS2dS}(~T)3 

(12) 

Hence, for the entropy change in step (B), in
volving 1'/4 elementary tetrahedra, 

For the third step (C) above, assuming that 
each polymer molecule contains many chains, 

~Sc~kP[ln (21'/V)+ln ~T"-lJ. (14) 

Finally, for the structural entropy of vulcani-
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zation, or cross-linking, 

ASv = ASA + AS B - AS c 
=kv[! In (,83/1rl) _,82A2+! In AT 

+ilnAT'-lnAT"-ln2]. (15) 

Both AT and AT", being determined by the 
chemical bond structure in the vicinity of the 
cross-linkage, are independent of network de
formations, and we assume that this is true also 
of AT'.l3 Consequently, for the purposes of the 
following development the magnitudes of the 
AT'S are of no importance, and we may write 

The dimension of the tetrahedron A is to be taken 
equal to a mean chain displacement length, since 
at the instant vulcanization occurs the chains are 
assumed to exist in random configurations. 
Within the bounds of our assumptions concerning 
the representative tetrahedral cell, it is not 
possible to specify what type of average value of 
r should be used. If we let A 2 = t:2, then since 
according to Eq. (2) t:2=3/2,82, ,82A2 can be 
replaced by 3/2. 

x 

FIG. 2. Comparison of the distributions of chain dis
placement lengths for isolated chains (W(x» and for the 
cross-linked state (F(x). 

13 Possible moderate dependence of aT' on deformation 
would have little effect on subsequent results. 

ENTROPY OF DEFORMATION 

If the vulcanized rubber is deformed by an 
externally applied stress, the regular tetrahedral 
array of cross-linkages in the idealized model dis
cussed above will be distorted. In other words, 
the most probable positions for a given set of 
four nearest neighbor cross-linkages will no 
longer lie at the corners of a regular tetrahedron. 
The manner in which a given tetrahedron is dis
torted will depend on its orientation with respect 
to the principal axes of the strain tensor. If, for 
example, the sample is elongated in a direction 
parallel to OA in Fig. 1, the tetrahedron will be 
converted to a regular pyramid, OA = A being 
transformed to a length aA, where a is the ratio 
of the deformed length to the initial length along 
the axis of strain. Since the change in density 
with deformation is negligible for rubber-like 
materials, except in the region where crystal
lization occurs, dimensions of the tetrahedron 
perpendicular to OA will change by the factor 
l/a!. 

We now proceed to the deduction of the struc
tural entropy of formation of the deformed 
network. Step (A) will differ only with respect 
to the spatial distribution of the v/4 cross
linkages. The entropy change will be the same 
as was found previously. Step (C) also requires 
no modification. Step (B) will differ inasmuch 
as Eq. (11) no longer applies to the deformed 
tetrahedron. 

In place of (11) we should average Lr;2 over 
all orientations of the direction of elongation with 
respect to the tetrahedron. An integration of this 
sort has not been carried out. However, it is 
shown in Appendix I that for orientations of the 
direction of the strain either perpendicular to or 
parallel to a face of the tetrahedron 

4 

L Yi2 =4s2+4A2 (a2+2/a)/3. (17) 
i~l 

We assume that this equation represents the 
average resultant for all orientations. 

Substitution of (17) in (10) leads ultimately to 

ASv = kv[(3/4) In (,83/1r!) 
- ,8W(a2+ 2/ a) /3 +const.] (18) 

for the entropy of vulcanization. Equation (18) 
reduces to (16) for the undeformed state a= 1. 
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Subtracting (16) from (18) there is obtained 
for the entropy of deformation 

t.Sd= -kv,82A2(a2+2/a-3)/3. (19) 

If we let ,82A2=3/2, 

t.Sd= -kv(a2+2/a-3)/2, (19') 

which is identical with Wall's9 expression for the 
entropy of deformation. Taking !::JId=O and sub
stituting Tt.Sd= -t.F in Eq. (1), Eqs. (5) and 
(6) are obtained for the retractive force and for 
Young's modulus of elasticity, respectively. 

DISCUSSION 

Both the Kuhn-Wall treatment and the one 
we have presented depend upon Eq. (2) for the 
probability distribution of chain lengths. The 
foundation for this relationship is reasonably 
secure, aside from the uncertainty in the mag
nitude of ,8, which does not enter into the elas
ticity calculations. The critical assumption in
volved in our treatment pertains to the use of the 
regular tetrahedron as a representative cell of the 
network structure. No specific model for the 
network is required in the Kuhn-Wall treatment. 
However, it has been necessary for them to 
postulate that the distribution of chain lengths is 
transformed directly as the macroscopic dimen
sions of the sample. No such.postulate enters into 
our treatment. 

I t is of interest to inquire into the compata
bility of this assumption with the restrictions 
imposed by the network structure, using the 
model we have assumed. If all cells of the net
work were regular tetrahedra, the corners of 
which are fixed with reference to their centers, a 
condition which goes beyond our actual assump
tions,14 then, as is shown in Appendix II, the 
distribution of chain lengths becomes 

F(x) = (4,8A/II· i ) exp [ -4,8W(I+x2)] 
Xsinh (8,82 A2x )xdx, (20) 

where x=r/A. This function is shown in Fig. 2 
in comparison with W(x) according to Eq. (2) 
for several values of ,82A2. The shapes of the dis
tributions given by the two functions differ, F(x) 
being narrower than W(x). This is due to the 
ordering resulting from adoption of the regular 

14 We have assumed only that the average cell is a regular 
tetrahedron. 

tetrahedron cell. However, the distribution be
comes sharper as ,82A2 is increased; i.e., as the 
tetrahedron is isotropically enlarged. This mag
nification of the tetrahedron (increase in A) cor
responds to the change in structure resulting 
from swelling, as discussed in the following paper. 
We conclude that swelling causes the distribution 
of chain lengths to become relatively narrower. 
The assumption made by Kuhn and Wall (for 
the case of deformations without change in 
volume) appears to be inapplicable to deforma
tions accompanied by changes in volume. 

Our method of treatment permits an estimate 
of the structural entropy change accompanying 
network formation from very long molecules 
which become cross-linked to one another at 
specified points of reactivity along their lengths. 
The actual magnitude of this entropy change, 
given by Eq. (15), is indeterminate to the extent 
of the arbitrariness in the values of the t.r's. If 
we assume that each of the t.r's is approximately 
equal to the volume of one of the Z chain ele
ments, which will be of the order of 13, and taking 
,8W=3/2, 

t.Sv = -kv[(9/8) In Z+3.4]. (21) 

Or, for the entropy per mole of cross-linkages in 
the network 

-R[(9/4) In Z+6.8]' 

This entropy term becomes quite large when the 
lengths of the chain are great. 

If the points at which cross-linking may occur 
cannot be specified in advance, as for example in 
the vulcanization of natural rubber, these ex
pressions lose their significance. Thus, if cross
linking may occur wherever two molecules are in 
contact (as would very nearly be the case for 
natural rubber with its numerous unsaturated 
linkages), attachment of the chains to one 
another takes place without imposing on the 
system an increase in order. Consequently, there 
will be no structural entropy change. This will 
not hold true if the material possesses only a few 
reactive points, all, or nearly all, of which are 
to be utilized in the formation of cross-linkage. 
A typical example is found in the vulcanization 
of Butyl rubber,15 an olefin-diolefin copolymer 

a R. M. Thomas, I. E. Lightbown, W. J. Sparks, P. K. 
Frolich, and E. V. Murphree, Ind. Eng. Chern. 36, 1283 
(1940). 



CROSS-LINKED POLYMER NETWORKS. I. 519 

containing only a small proportion of the latter. 
In such instances Eq. (21) may be presumed to 
yield a significant estimate of the structural 
entropy of vulcanization. 

We have assumed [assumption (1)J that our 
idealized network formed from regularly spaced 
points of cross-linkage will possess the same 
elastic properties as an actual completely random 
one. Although the actual magnitude of !1Sv given 
by Eq. (15) may be of little or no significance as 
pointed out above, we assume that the difference 
between Eqs. (18) and (15) represents correctly 
the change in entropy due to deformation. 

The rather artificial approximations involved 
in steps (A) and (C) effectively cancel out in 
!1Sa, the entropy of deformation. Only step (B) 
contributes to the terms appearing in the 
deformation formulas. The equivalence of our 
results with those of Wa1l9 and Treloar,1O ob
tained by a fundamentally different procedure, 
adds considerable support to equations (19), (5), 
and (6) relating elastic properties to structure. 

Similar treatments can be applied to networks 
in which either three or six chains (instead of 
four) are joined at the network junction points. 
For a network containing trifunctional junctions, 
the elementary cell becomes a triangle (instead 
of a tetrahedron) the corners of which represent 
the nearest neighbor junctions with respect to 
the given central junction. For a hexafunctional 
network, the elementary cell becomes an octa
hedron. In both cases the formula for the sum of 
the squares of the distances from the j neighbor
ing junctions to the central junction located at a 
distance s from the center of the deformed cell 
can be expressed 

f 
L: ri2=js2+jA(a2+2ja)j3, (17') 
i=l 

which reduces to Eq. (17) for a tetrafunctional 
network (J=4). Upon carrying through treat
ments paralleling that given above it is found 
that the entropy of deformation becomes 

Substitution of the more general expression (17') 

into this equation gives Eq. (19) for the entropy 
of deformation. Since this equation does not 
contain j, we conclude that only the number of 
chains and not the functionality of their inter
connecting linkages is important.' The results 
which have been obtained therefore should be 
equally applicable to networks of functionality 
other than four. 

We have been concerned primarily with net
works formed by cross-linking of previously 
formed long molecules. It should be pointed out, 
however, that simultaneous linear growth and 
cross-linking or branching may produce equiva
lent network structures. Typical examples of 
polymers of this type include the products of 
copolymerization of a vinyl compound (e.g., 
styrene) with a small amount of a divinyl sub
stance (e.g., divinyl benzene),16-18 or of polycon
densation of bi- and multifunctional reactants. 19 

In order for the above treatment to apply, it is 
only necessary that the multifunctional linkages 
be introduced under conditions of random coiling. 
In any case the polymer must possess sufficien t 
internal mobility to allow the chains to slip past 
one another during deformation; i.e., the polymer 
must be at a temperature such that it displays 
rubber-like behavior, or it must contain a suf
ficient quantity of a plasticizer to accomplish the 
same result. 

APPENDIX I 

Case 1 

Consider a regular tetrahedron ABeD, as shown in 
Fig. 3. Let its center 0 be the origin of a set of rectangular 
coordinates of which the z axis passes through the apex A, 
the x axis is parallel to the edge Be, and the y axis is parallel 
to the bisector of the angle BDe. Let 7" 72, 73, and r. be the 
distances from the corners A, D, e, and B, respectively, to 
a point P(x, y, z) located at a distance s from the origin. 
Let}, be the distance from the origin to any of the corners. 
It can then be shown by simple geometry that 

712=S2_2}.z+}.2, 
722=S2- (4v2"/3)}.y+i}.z+}.2, 
732 =S2- 2(2/3)i}.x+ (2v2"/3)}'y+ i}.z+}.2, 
r ,2 = s2+2(2/3)i}.x+ (2v2"/3)}.y+ i}.z+ }.2, 

16 H. Staudinger and W. Heuer, Ber. 68, 1618 (1935); 
Trans. Faraday Soc. 32, 323 (1936). 

17 K. G. Blaikie and R. N. Crozier, Ind. Eng. Chern. 28, 
1155 (1936). 

18 R. G. W. Norrish and E. F. Brookman, Proc. Roy. Soc. 
(London) A163, 205 (1937). 

19 P. J. Flory, J. Am. Chern. Soc. 63, 3083 (1941). 
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where S2 =X2+y2+Z2. Adding these four equations one 
obtains 

which is Eq. (11). 

B 

4 

2: r,2=4(s2+X2) 
i-I 

z 

c 
FIG. 3. 

Case 2 
Let the tetrahedron of Fig. 3 be subjected to a homogene

ous lateral compression in such a manner that the resulting 
irregular pyramid conforms to the following conditions: 
(1) its y and z dimensions are increased in the ratios l' and et, 
respectively; (2) the vector A 0 remains perpendicular to 
the base; (3) YOZ remains a plane of symmetry; and (4) the 
volume of the pyramid is unchanged. The geometry of the 
distorted solid then leads to the foIlowing values: 

rl 2 =S2- 2etAz+et2X2, 
r22=s2- (4v1/3et1hXy+ (8/9eth2X2+jetXZ+~et2X2, 
r32 = S2- (2 (2/3)I/etl'}' )Xx+ (2/3et'}'2)X2+ (2v1/3et1hXy 

+ (2/9eth2x2+ jetAz+~et2X2, 
r,2 =S2+ (2(2/3)I/etl'}' )Xx+ (2/3et'}'2)X2+ (2v1/3et1hXy 

+ (2/9eth2X2+~etXZ+tet2X2. 

Therefore 

2: r,2 = 4[S2+X2(et2+'Y2/et+ 1/et'}'2) /3J. 
i-I 

If '}' = 1, this formula reduces to Eq. (17), while the con
dition 'Y=et=l gives Eq. (11). It is also seen that the 
stretch factors can be transposed in the above formula 
without changing its symmetry, as would be expected on 
the basis of an assumption of isotropy. 

APPENDIX II 

According to Eqs. (10) and (11) the probability that the 
four chain ends terminate in the same volume element D.r 

is given by 

By translating the origin in Fig. 3 from the center 0 of the 
tetrahedron to the apex A, and changing to spherical 
coordinates, there is obtained 

£l(X, r, II, cp)dV= «(312/7r6) 
Xexp [-4(32(r2+2Xrcos cp+2X2)Jr2sin cpdcpdlldr, 

where cp is the angle OAP. Integration over the sphere of 
radius r gives the probability that the four chain ends lie 

at the point P at a distance r from A. It is found that 

J ndS= «(3I°/2~X) exp [ -4(32(r2+2X2) }sinh (8(32Xr)rdr. 

sphere 

If this expression is divided by the probability £lo [Eq. (12) J 
that the four chain ends terminate in the same volume 
element located any place, the ratio F(r) will give the 
probability that the volume element containing the chain 
termini lies in the spherical sheIl between rand r+dr; in 
other words, F(r) is the probability that a constituent chain 
has a displacement length r. Therefore 

F(r)dr= J PAS / rlo(X) 

sphere 

= (4(3/7rIX) exp [-4(32(r2+X2)}sinh (8(32Xr)rdr. 

Letting x=r/X, the above expression gives Eq. (20). 


