"Cooperative behavior of biased probes in crowded interacting systems"
OA Vasilyev, O Benichou, C Mejia-Monasterio, ER Weeks, & G Oshanin, to be published in Soft Matter, doi: 10.1039/C7SM00865A

We study, via extensive numerical simulations, dynamics of a crowded mixture of mutually interacting (with a short-range repulsive potential) colloidal particles immersed in a suspending solvent, acting as a heat bath. The mixture consists of a majority component - neutrally buoyant colloids subject to internal stimuli only, and a minority component - biased probes (BPs) also subject to a constant force. In such a system each of the BPs alters the distribution of the colloidal particles in its vicinity, driving their spatial distribution out of equilibrium. This induces effective long-range interactions and multi-tag correlations between the BPs, mediated by an out-of-equilibrium majority component, and prompts the BPs to move collectively assembling in clusters. We analyse the size-distribution of the self-assembling clusters in the steady-state, their specific force-velocity relations and also properties of the effective interactions emerging between the BPs.