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Effects of polydispersity on the plastic behaviors of dense two-dimensional granular
systems under shear
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We study particle-scale motion in sheared highly polydisperse amorphous materials, in which the largest
particles are as much as ten times the size of the smallest. We find strikingly different behavior from the
more commonly studied amorphous systems with low polydispersity. In particular, an analysis of the nonaffine
motion of particles reveals qualitative differences between large and small particles: The smaller particles have
dramatically more nonaffine motion, which is induced by the presence of the large particles. We characterize how
the nonaffine motion changes from the low- to high-polydispersity regimes. We further demonstrate a quantitative
way to distinguish between “large” and “small” particles in systems with broad distributions of particle sizes.
A macroscopic consequence of the nonaffine motion is a decrease in the energy dissipation rate for highly
polydisperse samples, which is due both to a geometric consequence of the changing jamming conditions for
higher polydispersity and to the changing character of nonaffine motion.
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I. INTRODUCTION

Amorphous materials are common, ranging from glasses
to emulsions, foams, granular media, cement pastes, food
products, and more. These materials are often composed of
mixtures of various sizes of particles. Much prior work has
studied the flow of amorphous materials using model systems
with low polydispersity, which is to say, mixtures of particles
of fairly similar sizes [1–18]. However, many natural mate-
rials are highly polydisperse, with particle sizes varying by
factors of ten or more, which impacts the flow of glaciers
[19], landslides and avalanches [20], soil [21], mud [22],
cement [23], and food products [24]. Computational studies
have also increasingly relied upon moderately polydisperse
model glass formers, where manipulating particle sizes allows
studies of equilibrium glass configurations at unusually low
temperatures [25–28]. These natural and model systems with
large polydispersity are complex and spatially heterogeneous,
and it is hard to extract general principles. The goal of this
paper is to examine the role of the particle size distribution
in sheared materials and, in so doing, bridge between simple
model systems with low polydispersity and complex highly
polydisperse real-world materials.

Polydispersity leads to interesting physics. For example,
polydisperse hard spheres can phase separate into multiple
crystalline phases [29]. Polydispersity can lead to new phases
for active matter systems [30]. An experimental study of poly-
disperse colloidal glasses found that different particle sizes
had different dynamics and local environments [31]. Diffusion
of tracers in porous materials becomes anomalous when the
porous medium is highly polydisperse [32]. Force chains in
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granular materials become dramatically more heterogeneous
in more polydisperse systems [33–35]. The viscosity of par-
ticulate suspensions strongly depends on polydispersity [36],
varying by orders of magnitude for constant volume fraction
of particles [37]. These studies highlight how new physics
can emerge from complex particle size distributions, but prior
work studying sheared amorphous materials typically down-
plays the role of particle size distributions. Experiments and
simulations of sheared amorphous materials often use slightly
polydisperse samples to inhibit the formation of crystalline
structures: for example, using two distinct sizes with size
ratio O(1) [9–16] or experiments using nominally single-
component systems with small intrinsic polydispersity [1–8].
These studies led to insights such as the importance of non-
affine motion in sheared disordered materials [5,10,12], but
generally treat the amorphous system as homogeneous. Ex-
ceptions to the assumption of homogeneity exist; for example,
studies show that “soft spots” in amorphous materials are
more likely to exhibit particle rearrangements under shear
[14], although even in these analyses, it is common to focus
on identifying soft spots centered only on larger particles in a
bidisperse mixture [15,38,39]. It is far from clear that many of
the methods used to identify these disordered “defects” in the
solid will generalize to highly polydisperse samples, or that
particles of different sizes within a highly polydisperse sample
will even qualitatively show similar nonaffine behavior under
shear. Indeed, a confocal microscopy study of a sheared highly
polydisperse emulsion showed qualitative differences in the
motion of large and small droplets [40].

In this paper we show that highly polydisperse two-
dimensional (2D) amorphous systems under shear are qualita-
tively different from systems of low polydispersity. We show
that large particles behave qualitatively differently from small
particles; we demonstrate how to quantify which particles are
“large” and “small”; and we show how these effects appear
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TABLE I. Rmin and polydispersity δ for the exponential size
distributions we use. Rmax = Rminα. Note that Ri = 0.83, 1.17 in our
bidisperse system (δ = 0.17).

α 10 5 4 3 2

Rmin 0.50 0.52 0.54 0.59 0.71
δ 0.50 0.43 0.39 0.31 0.20

as the particle size distribution broadens. Additionally, our re-
sults show that the largest particles strongly influence nearby
particle rearrangements, suggesting that previously studied
soft spots (e.g., Refs. [14,15,38,39,41]) will be different in
character—and easier to identify—in highly polydisperse ma-
terials.

II. COMPUTATIONAL METHODS

We simulate the two-dimensional Durian bubble model
[42] using the non-mean-field version introduced in Ref. [43],
in which particles have repulsive contact forces and experi-
ence viscous forces from neighboring particles. Two particles
with interparticle distance ri j smaller than the sum of their
radii Ri + Rj overlap. Overlapping particles experience a re-
pulsive force,

�F repulsive
i j = F0

(
1 − �ri j

|Ri + Rj |
)

r̂i j, (1)

and also a viscous force,

�F viscous
i j = b(�vi − �v j ). (2)

The repulsive force acts in directions to push the two particles
apart, and the viscous force acts on each bubble to try to
bring their velocities �vi and �v j into agreement. F0 = 1 and
b = 1 are constants indicating the relative strength of the two
forces. The dependence of the repulsive force on R means that
larger particles are effectively softer. Given that the bubbles
are massless, the forces on each bubble must sum to zero,
which results in equations that can be solved for each bubble’s
velocity �vi. This then is a set of differential equations which
are solved using fourth-order Runge-Kutta. Other computa-
tional details are as given in Ref. [44].

We consider a variety of truncated exponential size
distributions, P(R) ∼ exp(−R/λ), where R is the radius, con-
sidered over the domain Rmin � R � Rmax ≡ αRmin. We study
systems in which α, which characterizes the width of the
distribution, ranges from 2 to 10. The decay constant λ is set
to Rmin. We take 〈R〉 as our unit of length, and we nondimen-
sionalize time by the microscopic relaxation time (based on
the interparticle spring constant and viscous damping forces
[42]). We will compare the properties of these exponentially
distributed systems with a standard bidisperse mixture com-
posed of equal numbers of particles whose size ratio is 1 : 1.4.
All of these distributions can be characterized by their poly-
dispersity δ, defined as the standard deviation of P(R) divided
by 〈R〉; the values of δ and Rmin are given in Table I.

We shear these systems in square boxes with length L
using Lees-Edwards boundary conditions. We keep L

〈R〉 = 100
constant which guarantees that L is at least 20Rmax for our

FIG. 1. Stress as a function of strain rate for the low-
polydispersity sample (α = 2, top data), bidisperse sample (middle
data), and the highly polydisperse sample (α = 10, bottom data). The
fit lines are to the Herschel-Buckley formula, σ = σ0 + K γ̇ 0.4. The
horizontal dashed lines indicate the yield stresses σ0. The simulations
analyzed in the remainder of our paper are at γ̇ = 10−4.

systems. The area fraction φ is 0.93, which is well above the
jamming transition point (φJ = 0.84–0.86 for our particle size
distributions). We wish to shear at a slow rate, but nonetheless
fast enough that the computational time is not excessive. The
rheological behavior of two of our systems is shown in Fig. 1,
and we pick our nondimensional strain rate to be γ̇ = 10−4

as a compromise where the total stress is less than twice the
yield stress, and the computational speed is adequate. We sim-
ulate the shear at least up to strain γ = 10 to ensure enough
statistics; an initial transient response for γ < 0.2 is discarded
before analysis. We will focus most of our discussion on the
α = 10 (maximally polydisperse) systems of 2500 particles
and the bidisperse systems of 3098 particles. A snapshot of
a portion of the polydisperse system under shear is shown in
Fig. 2(a).

III. RESULTS

A. Nonaffine motion of individual particles

We examine particle motion over small strain intervals
�γ = 0.005, an interval over which particles do not rear-
range dramatically. To characterize the behavior of individual

(a) (b)

FIG. 2. (a) shows a snapshot of a system with an exponential
size distribution, with the particle size ratio Rmax/Rmin = α = 10.
Pink arrows indicate the total displacements of particles for a strain
interval of 0.005. (b) sketches the mean flow pattern around large
particles under the applied shear strain.

054605-2



EFFECTS OF POLYDISPERSITY ON THE PLASTIC … PHYSICAL REVIEW E 108, 054605 (2023)

FIG. 3. Averaged ��r 2
NA,i vs particle radius R for systems with

different size distributions. From the top curve (blue) to bottom (pur-
ple) the symbols correspond to α = 2, 3, 4, 5, and 10. Diamonds are
for the bidisperse particle size distribution. The inset shows measured
nonaffine motion field 〈�rNA〉(x, y) around reference particles with
2 � Ri � 2.8 indicated by the two concentric circles. For the region
Ri < 2.8, arrows are only drawn where sufficient data exist. Data are
for the system with α = 10.

particles, we consider the nonaffine component of motion
by subtracting off the mean (affine) flow, ��rNA,i = ��ri −
�γ yix̂, where for particle i, the first term on the right-hand
side (RHS) is the real motion over �γ , and the second term on
the RHS is the affine motion imposed by the simulation, where
x̂ is the velocity direction and yi is the position in the gradient
direction. Local rearrangements cause deviations from purely
affine motion, as seen in Fig. 2(a): Were the motion entirely
affine, all arrows would be horizontal.

To understand how nonaffine motion depends on particle
size, we calculate the mean ��r 2

NA,i as a function of parti-
cle size R, shown in Fig. 3. On average ��r 2

NA,i decreases
with R for all systems, including the bidisperse system; this
agrees qualitatively with previous observations in polydis-
perse emulsions under cyclic shear [40]. Figure 3 shows that
large particles are more likely to follow the affine shear flow,
whereas small particles will have more shear-induced diffu-
sivity. A simple explanation is that large particles have more
neighbors than small ones. The influence of these neighbors
on the motion of the large particles on average cancel with
each other, which results in the larger particles having a
smaller magnitude of ��rNA,i. Note that the bidisperse results
also match to the family of curves, showing measurably dif-
ferent ��r 2

NA,i values for small and large particles.
These results reveal the following microscopic picture of

motion near the large particles. Large particles are “strong”
and have less nonaffine motion; they are more likely to fol-
low the affine imposed shear flow. In the reference frame
comoving with the affine velocity of a large particle, this
relative immobility causes the “weaker” small particles to
detour around the larger particles, as sketched in Fig. 2(b).
Examining the trajectories of individual particles reveals mo-
tions that qualitatively match the sketch of Fig. 2(b) (data not
shown).

B. Mean nonaffine flow fields

To understand how large particles perturb the flow we
calculate the average nonaffine flow field around particles of

-0.004
-0.003
-0.002
-0.001
0
0.001
0.002
0.003
0.004

FIG. 4. Color field of ��rNA,i · r̂; the dot product with r̂ selects for
components of the motion that are outward (light red) or inward (dark
blue), as indicated by the color bar. From left to right, the top two
panels are size ranges Ri = 0.80–0.84 and 2.0–2.8 using data from
the α = 10 system. The bottom two panels are from the bidisperse
system for the small (lower left) and large (lower right) particles.

different sizes. We average the nonaffine motion 〈��rNA, j〉
of all particles j at a specific position (x, y) relative to the
center of a reference particle i. We bin the relative position
(x, y) with tolerance δx = δy = 0.1. We then average that field
over all reference particles i with radii Ri in a specific range
to get better statistics yielding 〈��rNA〉(x, y). In the inset to
Fig. 3 we show this field for particles with 2.0 � Ri � 2.8.
The top left and bottom right, relative to the reference par-
ticle, are referred to as the “compressive directions” as the
imposed affine flow tries to push neighboring particles toward
the reference particles [45,46]. This affine push is resisted
by the large reference particle, resulting in outward-pointing
nonaffine motion. Likewise, the regions at the top right and
bottom left are referred to as the “extensional directions” in
terms of the background flow, and the nonaffine motion is
inward. Adding the background affine shear flow to the non-
affine flow field yields the qualitative sketch of Fig. 2(b). This
nonaffine motion field illustrates the importance of relative
positions in the polydisperse sample.

Figure 4 shows four examples of the r̂ component of
��rNA(x, y) to demonstrate how the field differs with different
reference particle sizes. The top two panels are data from the
broadest particle size distribution, examining the flow around
smaller (top left) and larger (top right) particles. For compari-
son, the bottom two panels are for the bidisperse distribution.
We highlight that in this system a finite far field can be iden-
tified and whose sign in the top left panel is opposite to the
field in the top right panel. The far field is less obvious in the
bottom two panels, although still present to a small degree as
will be quantified below.

The interpretation of the top panels of Fig. 4 is that large
particles are strong, move more affinely, and force the other
particles to detour around them. For the smaller reference
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particles, the influence of the reference particle is clearly
different. Neighboring particles at the surface of any reference
particle (large or small) can have minimal center-to-center dis-
tances with the reference particle only if they are themselves
small particles. Thus the region immediately at the surface of
a reference particle is composed of small particles and at the
surface all cases in Fig. 4 look the same: an outward nonaffine
motion along the compressive direction, and inward nonaffine
motion along the extensional direction. However, farther away
from small reference particles, the size of the neighboring
particles can be significantly larger than the reference particle.
These small reference particles are weaker and more likely
to be moved nonaffinely by their neighboring particles. Thus,
the inward moving (dark blue) colors around the small ref-
erence particle along the compressive directions reflect that,
on average, the small reference particle is being pushed away
from the neighbors along these directions. In other words,
the nonaffine motion pattern around large reference particles,
as seen in Fig. 4 (top right), is precisely because the large
reference particles are larger than many other particles; and
the pattern around smaller reference particles is qualitatively
different precisely because they are smaller than many other
particles.

To verify this assertion, we quantify the behavior of
��rNA(x, y) · r̂ by least-squares fitting the field data to
A2(Ri, r) sin 2θ . That is, we switch from (x, y) to (r, θ ), tak-
ing advantage of the symmetry of Fig. 4 to express the
magnitude of the flow in terms of the prefactor A2(Ri, r).
Higher-frequency terms, of the form sin nθ , have prefactors
at least an order of magnitude smaller than A2 and are thus
ignored. The results for A2(Ri, r) for several reference droplet
radii Ri are shown in Fig. 5(a), showing an obvious depen-
dence of ��rNA on size. For the largest reference particles
(Ri = 5, the purple curve) A2 is negative for all distances r
from the reference particles. This negative A2 indicates that
the large particles are strong, and cause the average flow field
sketched in Fig. 2(b) and quantified in Fig. 4 (top right). The
shape of A2 gradually changes with decreasing Ri. For the
smallest reference particles (Ri = 0.5, the pink curve), A2 is
positive over most of the range, with a small exception at the
smallest r. This confirms that these particles are weak, and are
the ones whose motion is most often perturbed by the larger
particles, quantifying what is seen in Fig. 4. For the bidisperse
case, the two A2 curves for the two sizes oscillate [Fig. 5(a)
inset]. The oscillations reflect the pair correlation function and
match the rings visible in the bottom two panels of Fig. 4.

We wish to understand how these results depend on the size
of the reference particles. Here, we focus on the far field: in
some cases A2 > 0 (<0) for large r indicating weak (strong)
particles. We quantify the far field by calculating the average
〈A2(r)〉r over Ri + 6 � r � 40; our results are not sensitive
to this choice. The qualitative results discussed above are
confirmed in Fig. 5(b): The flow pattern for nonaffine motion
differs in sign for small reference particles as compared to
large reference particles.

These results answer two interesting questions. First, for a
given size distribution, how do we distinguish between “large”
and “small” particles? We propose 〈A2,far (R∗)〉 = 0 as the
criteria separating the two classes of particles. For the broad
(α = 10) particle size distribution we find R∗ = 1.7 ± 0.1.

FIG. 5. (a) Prefactor characterizing the nonaffine field A2 vs dis-
tance r for several reference particle sizes in the α = 10 system. The
inset shows A2 for the bidisperse system, where the black (gray)
curve corresponds to the smaller (larger) particles. (b) 〈A2,far〉 vs R
curves for four systems. Color indicates size spans for α = 10, 5, and
3; [colors matching Fig. 3(a)] and the open diamonds correspond to
the bidisperse system. Solid lines are quadratic fits to guide the eye.
The crossing zero point at each solid line is defined as R∗. The scatter
at large R results from a lack of statistics given that large particles are
rare.

Second, how does this length scale depend on the particle
size distribution? Figure 6(a) shows R∗ as a function of the
polydispersity δ of the particle size distributions. R∗ grows for
broader particle size distributions. Intriguingly, in our systems
the relative fraction of particles with Ri > R∗ decreases from
43% to only 8% from our narrowest to broadest size distribu-
tions.

C. Energy dissipation depends on polydispersity

These results have implications for a macroscopic property
of these samples: The total energy dissipation rate is lower
for the highly polydisperse samples. In our model, the power
supplied by external driving is dissipated through the viscous
force as

σ γ̇ A = 1

2

∑
i> j

( �vi − �v j )
2, (3)

where σ is the shear stress, A is the area, and the sum is over
all pairs of particles (i, j) in contact [47]. The dissipation rate
decreases by 12.4% as the size distribution is changed from
α = 2 to α = 10.

As the dissipation derives directly from velocity differ-
ences ( �vi − �v j )2 between contacting particles, the decreasing
dissipation rate can be related to nonaffine motion. There are
two competing effects. First, note that the velocities can be
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FIG. 6. This figure shows a variety of quantities as a function
of the polydispersity δ; in all plots the smallest value of polydisper-
sity (δ = 0.17) corresponds to bidisperse data, the second smallest
(δ = 0.20) corresponds to the distribution with rmax/rmin = α = 2,
and the highest (δ = 0.50) corresponds to α = 10. Where shown, the
error bars indicate uncertainty based on five independent simulations.
Where not shown, the uncertainties are smaller than the symbol
size. (a) R∗ obtained from A2 against the polydispersity [Fig. 5(b)].
(b) Pressure of the sheared system (solid symbols) and of the un-
sheared system (open symbols). (c) Jamming area fraction φJ (recall
that the simulations are performed at φ = 0.93 > φJ ). (d) Mean
effective particle diffusivity D measured from 〈�y2〉 = 2D�γ in the
limit of �γ > 1 (see Fig. 7). (e) Energy dissipation rate U̇ . (f) Shear
stress σxy at our strain rate γ̇ = 10−4. (g) Mean contact number Z .

decomposed into affine and nonaffine components. Indepen-
dent of the polydispersity, the nonaffine component (�vNA,i −
�vNA, j )2 constitutes about 94% of the total dissipation [the
affine component (�vA,i − �vA, j )2 constitutes around 6%, and
cross terms involving �vA and �vNA are negligible]. Figure 3(a)
highlights that there is a broader range of vNA for the more
polydisperse systems. Thus, 〈(�vNA,i − �vNA, j )2〉 is observed to
be larger for higher polydispersity: On average each contact
dissipates more energy, 10% more for α = 10 as compared to

TABLE II. This table shows how quantities change when com-
paring the α = 10 system to the α = 2 system, that is, [X (α =
10) − X (α = 2)]/X (α = 2). The quantities are diffusivity D, pres-
sure p, pressure without shear p∗, energy dissipation rate U̇ , average
contact number per particle Z , shear stress σxy, yield stress σ0, and
�σ = σxy − σ0.

Quantity Change as α = 2 → 10

D +21.3%
p −28.0%
p∗ −27.0%
Z −4.75%
U̇ −12.4%
σxy −12.5%
σ0 −17.3%
�σ −8.42%

α = 2. (The affine component dissipation also increases with
increasing polydispersity.) Second, given that we keep the
system size L/〈R〉 constant between the different simulations,
highly polydisperse samples have fewer particles and thus
fewer contacts: 21% fewer contacts for α = 10 as compared
to α = 2. The product of the mean dissipation per contact
and the number of contacts results in an overall decrease of
the total dissipation decreases as the polydispersity increases,
consistent with prior work [36].

An alternate view of the energy dissipation stems from a
macroscopic, geometrical perspective. As noted above, the
energy dissipation rate is σ γ̇ A. Figure 1 shows that at our
stress rate γ̇ = 10−4, the stress is partially due to the yield
stress (accounting for 45.5% of the total stress at the lowest
polydispersity) and partially due to a rate-dependent term
(accounting for the remainder of the stress). The yield stress,
being a quantity measured as γ̇ → 0, is purely dependent on
geometry and in particular is a function of φ − φJ , the area
fraction compared to the jamming transition area fraction.
As seen in Fig. 6(c), φJ increases with increasing polydis-
persity; thus the yield stress drops as given in Table II. The
rate-dependent component of the stress also drops, as given
by the entry for �σ in the table. Thus the change in total
stress σ is (−17.3% × 0.455) + [−8.42% × (1 − 0.455)] =
−12.5%, showing that the data in Table II correctly account
for the decrease in σ and thus the decrease in energy dissi-
pation rate U̇ . In particular, the geometric component of the
decreasing energy dissipation rate is almost twice as large
as the nonaffine (γ̇ -dependent) component of the decrease;
nonetheless, both components are significant.

D. Dependence on strain interval

Above we use a strain interval �γ = 0.005 to calculate
the nonaffine motion. This choice is based the mean-square
displacement of particles, as shown in Fig. 7. The system ex-
hibits ballistic motion (〈�y2〉 ∼ �γ 2) until �γ ∼ 10−2. This
suggests that motion up to strain increments of 0.005 is within
individual coherent rearrangement events (the relaxation of a
plastic event, for example) and then motion over longer strain
intervals is more uncorrelated, leading to a random walk of
particles in space. Our choice of �γ = 0.005 ensures that
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FIG. 7. Mean-squared displacement in the gradient direction as a
function of strain interval �γ for the α = 10 system. The left dashed
line has a slope of 2 indicating ballistic motion, and the right dashed
line has a slope of 1, indicating diffusive motion.

particles have displacements well beyond numerical preci-
sion, while not yet (on average) having undergone more than
one rearrangement motion.

We check our main result (the magnitude of nonaffine
motion against particle size) using various �γ from 0.000 05
to 0.5, with results shown in Fig. 8. The nonaffine motion
data are normalized by dividing by �γ 2. The results with �γ

smaller than 0.01 collapse and belong to the same family, con-
sistent with the ballistic mean-squared displacement (MSD)
scaling seen in Fig. 7 for small strain intervals. Likewise, the
flow fields such as shown in the inset of Fig. 3 do not change
with �γ = 5 × 10−4, although they are noisier for smaller
�γ .

In contrast, when the strain interval is larger (�γ � 10−2),
particle motion becomes diffusive. The results such as the
nonaffine motion pattern fade away as particles undergo mul-
tiple uncorrelated rearrangement events.

IV. CONCLUSIONS

In this work we have shown that in a sheared amorphous
material with high polydispersity, particle size matters. Large
particles are more likely to move affinely, following the im-
posed shear flow, as they feel the average motion of all of their
neighbors. We term such particles as “strong” in the sense
that they resist being pushed nonaffinely by their neighbors.
The imposed shear flow causes those neighbors to detour
around the strong particles, which means the smaller a par-
ticle is, the “weaker” it is and thus the more its motion is
nonaffine. One can quantify this by identifying a transition
particle radius R∗ separating the two classes of particles. We
see that these effects become increasingly important as the
particle size distribution broadens [Fig. 6(a)]. Intriguingly, we
demonstrate this distinction still matters, albeit only slightly,
for the canonical bidisperse sample with a particle size ratio

FIG. 8. Averaged ��r 2
NA,i vs particle radius R for the α = 10

system (circles) and the bidisperse system (diamonds) using various
strain intervals indicated by color. From top to bottom, the strain
interval is 5 × 10−5 (blue), 5 × 10−4 (cyan), 5 × 10−3 (yellow),
5 × 10−2 (orange), and 5 × 10−1 (purple). Note that the yellow data
are nearly obscured by the cyan data.

1 : 1.4. Nonetheless, the behavior of the highly polydisperse
samples is qualitatively distinct from the more homogeneous
samples with low polydispersity. Our results may have impli-
cations, e.g., for diffusive motion in biological cells, which
are highly polydisperse crowded environments [48]. Overall
the effective diffusivity does not depend strongly on polydis-
persity, as shown in Fig. 6(d). Nonetheless, the magnitude of
the nonaffine motion of large particles is less than that of the
small particles, as shown in Fig. 3, so the size dependence
of this shear-induced diffusive mixing can be important. Inci-
dentally, it is interesting to note that our effective diffusivities
normalized by system size L = 100 have a value of about
0.015–0.02, quite comparable to the results of Lemaître and
Caroli [13] at the same value of L

√
γ̇ . This is nontrivial as we

study a dissipative sheared foam system whereas they studied
a two-dimensional sheared Lennard-Jones system.

A further consequence of our work will be on predicting
sites of plasticity in highly polydisperse athermal amor-
phous materials under shear or particle rearrangements at
finite temperature. Current analyses typically focus on the
rearrangement statistics of only large particles, or implic-
itly assume via their definition of plastic activity that the
qualitative nature of rearrangements is insensitive to particle
size [14,15,18,38,39,41,49,50]. Our results suggest that if one
wishes to look for such soft spots in polydisperse materials, a
definition of particle activity and a definition of softness that
explicitly depends on particle sizes will be necessary.
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