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Abstract: Volumetric imaging and 3D particle tracking are becoming increasingly common 
and have a variety of microscopy applications including in situ fluorescent imaging, in-vitro 
single-molecule characterization, and analysis of colloidal systems. While recent interest has 
generated discussion of optimal schemes for localizing diffraction-limited fluorescent puncta, 
there have been relatively few published routines for tracking particles imaged with bright-
field illumination. To address this, we outline a simple, look-up-table based 3D tracking strat-
egy, which can be adapted to most commercially available wide-field microscopes, and pre-
sent two image processing algorithms that together yield high-precision localization and re-
turn estimates of statistical accuracy. Under bright-field illumination, a particle’s depth can be 
determined based on the size and shape of its diffractive pattern due to Mie scattering. Con-
trary to typical “super-resolution” fluorescence tracking routines, which typically fit a diffrac-
tion-limited spot to a model point-spread-function, the lateral (XY) tracking routine relies on 
symmetry to locate a particle without prior knowledge of the form of the particle. At low 
noise levels (signal:noise > 1000), the symmetry routine estimates particle positions with ac-
curacy better than 0.01 pixel. Depth localization is accomplished by matching images of par-
ticles to those in a pre-recorded look-up-table. The routine presented here optimally interpo-
lates between LUT entries with better than 0.05 step accuracy. Both routines are tolerant of 
high levels of image noise, yielding sub-pixel/step accuracy with signal-to-noise ratios as 
small as 1, and, by design, return confidence intervals indicating the expected accuracy of 
each calculated position. The included implementations operate extremely quickly and are 
amenable to real-time analysis at frame rates exceeding several hundred frames per second. 

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement 

1. Introduction

Recently, intense effort has been devoted to developing 3D localization microscopy tech-
niques for applications that include in situ single-molecule fluorescence imaging, characteri-
zation of colloidal systems, and in-vitro single-molecule assays such as tethered-molecule 
force spectroscopy [1–5]. While scanning techniques such as confocal and light-sheet micros-
copy suffice for imaging stationary or slow-moving systems (such as fixed tissue samples), 
highly dynamic systems require frame rates only accessible with wide-field microscopy. In 
particular, force spectroscopy applications such as Optical Traps (OT), Magnetic Tweezers 
(MT), or Acoustic Force Spectroscopy (AFS) often require sampling rates as high as 1 kHz, 
so that high-speed wide-field or non-image-based tracking techniques are the only viable op-
tions [6–9]. Moreover, studies employing those techniques typically require nanometer-scale 
localization accuracy. One of the biggest barriers to setting up an assay utilizing 3D localiza-
tion, particularly those incorporating force spectroscopy, is that there are few turn-key solu-
tions available commercially. Consequently, new assays often require building or retrofitting 
a custom microscope. Moreover, while excitement over super-resolution fluorescence mi-
croscopy has driven a surge in manuscripts detailing optimal routines for tracking diffraction-
limited spots, there have been relatively few algorithms published discussing how to track 
particles imaged under bright-field illumination. 
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This manuscript presents a set of straightforward, computationally efficient image analy-
sis routines for 3D tracking of bright-field illuminated particles in real-time, with nanometer-
scale precision. The scheme can be conceptualized in two parts. First particles are localized in 
2D (within the image plane). Next, their appearance is used to determine their depth along the 
optical axis of the microscope. Unlike typical fluorescence tracking routines, which require 
prior knowledge about the image of a particle (e.g. the point-spread-function of the optical 
system), the routine presented here relies on image symmetry to determine lateral particle 
position. This is accomplished by extending the method presented by Parthasarathy [10]; in 
particular, we show how one can determine the uncertainty of particle position based on the 
noise characteristics of each processed image. Furthermore, this allows us to determine the 
optimal way to weight the image data for maximum accuracy. By fitting captured images to a 
measured, depth-dependent look-up-table, particle position along the optical axis can be com-
puted quickly without requiring detailed knowledge of the characteristics of the condenser 
optics. We extend the look-up-table method, initially proposed in [11], Gosse, et al., to dra-
matically improve the resolution of axial positions. We additionally provide the uncertainty of 
the axial position for each measurement. Our methods build on the computational efficiency 
of [10–12] and thus can execute in real time at rates up to 1 kHz. Likewise our methods retain 
the hardware advantages of [11,12], Gosse et al. and van Loenhout, et al., in that they are 
applicable to bright-field microscopes modified only to include automated focus control. 

1.1. 3D imaging via diffractive scattering 

As opposed to 3D scanning modalities (e.g. light-sheet, confocal), which record and distin-
guish voxels, the approach used herein discriminates axial position based on the appearance 
of a nano- or micro-particle when imaged under bright-field illumination. Mie scattering cre-
ates concentric interference fringes surrounding a particle. The periodicity and extent of these 
fringes depend on the wave-front of the incident light from the condenser, the particle size, 
and its distance with respect to the focal plane of the microscope. With the first two parame-
ters held constant, the fringe pattern of a particle changes smoothly as it moves axially (Z). 
Consequently, the Z-position can be determined either through analytical fitting using digital 
holographic microscopy or by matching fringe patterns to a look-up Table [11,13,14]. 

While analytical fitting approaches do not require look-up-tables and therefore can be im-
plemented without a prior calibration procedure, they are less versatile. For instance, diffrac-
tion patterns are objective-dependent and vary with optical alignments. Consequently, careful 
alignment of the objective and condenser in bright-field illumination is essential [13]. Fur-
thermore, digital holographic routines are computationally intensive, and are ill-suited to situ-
ations where real-time readout is beneficial (particularly true for force-spectroscopy tech-
niques). In contrast, look-up table (LUT) methods are computationally inexpensive and they 
do not rely on exacting microscope alignments provided the LUTs are recorded with the same 
settings. 

The only major requirement in retrofitting a stock microscope for bright-field LUT-based 
depth tracking is the need for automated focus control to conveniently record LUTs. The LUT 
directly dictates the accuracy of depth determination. Various commercially available, motor-
based, focusing systems allow coarse (micron-scale) Z-tracking, while nanometer accuracy 
can be obtained using piezoelectric translators. There are a number of high-precision piezoe-
lectric objective scanners and microscope stage inserts that provide 10-20 nanometer accura-
cy and closed-loop repeatability. The data presented here was acquired using a Physik-
Instrumente P-721.CDQ objective scanner and E-665 piezo controller (Physik Instrumente, 
Auburn, MA). Other scanners [6,15] have been used in similar implementations. 

1.2. Established tracking routines 

Realizations of LUT-tracking vary, although, typical implementations adopt the algorithm 
described by Croquette et al. in their seminal publication detailing a magnetic tweezer [11]. 
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estimate [12]. Nevertheless, in all three cases the convolution routines suffer from two major 
shortcomings: First, subpixel localization cannot be determined without either some form of 
interpolation or image-upscaling and second, convolution routines do not provide an obvious 
mechanism for determining localization confidence limits. 

1.3. Features of our 3D LUT tracking algorithm 

Force spectroscopy assays routinely require localization resolution on the order of 10-20 nm. 
With a 100× objective and pixel sizes ranging from 16 µm, for sensitive, scientific-grade 
cameras, down to 4 µm, for high-speed, industrial vision cameras, 10 nm resolution translates 
to localizing a particle to within 0.06-0.25 pixels. Consequently, routines for maxima detec-
tion or kernel convolution that have no better than pixel accuracy are inadequate. Similar re-
quirements apply to axial-localization. For example, the objective scanner used for the exper-
iments described below has a minimum step size of 20 nm, meaning discrete matching is in-
sufficient for achieving <20 nm accuracy. Also, due to vibration, mechanical drift, and imag-
ing noise, it is virtually impossible to record LUT steps of exactly equal intervals, see Fig. 
1(c) (inset). Thus, to overcome the limitation of discrete sampling and measurement noise, 
some form of interpolation is needed. We achieve this by adapting the LUT algorithm to use 
splines for fast interpolation with accuracy limited only by the level of image noise. 

Additionally, particle tracking analyses can be improved by including precision estimates, 
which enables systematic identification of low quality or missing data and the propagation of 
localization error through subsequent calculations. For example, characterization of both opti-
cal trap stiffness and force applied via Magnetic Tweezing involve tracking the Brownian 
motion of a confined particle [8,19]. For stiff traps (or high tension) particles become very 
confined, in which case localization errors greater than tens of nanometers (several tenths of a 
pixel, as determined by the resolution estimates above) can result in wildly inaccurate meas-
urements. As such, localization precision estimates can be used to determine the limits of 
stiffness/force sensitivity. In this manuscript we demonstrate how to estimate precision for 
both XY and Z localization algorithms. 

Finally, for high frame rate applications (such as that required for the fluctuation analysis 
used in force-spectroscopy), capturing and storing images to disk for offline processing is 
problematic due to both the data storage requirements and the delays which prohibit real-time 
decision-making during experiments. Thus, fast (100-1000 frame/sec or better) and parallel-
processing algorithms are advantageous. Building upon pre-existing, efficient algorithms, we 
present a high-speed, 3D particle tracking routine which achieves excellent XY resolution 
even in the presence of noise, sub-step Z precision, and numerical precision estimates. 

2. Methods

2.1. Radial symmetry detection

We start by describing our routine for determining a particle’s lateral position. As an alterna-
tive to image convolution, the image of a particle possesses an origin of radial symmetry that 
can be determined with on the order of 3MN operations using radial symmetry detection [10], 
the details of which are reprised in Eqs. (1)–(5), below. The radial symmetry routine leverag-
es the fact that the gradient vectors of a radially symmetric image will always be directed 
along lines through the origin, illustrated in Fig. 2(a). A linear least-squares fit of the point at 
which all of the gradient lines in an image intersect yields the origin of symmetry; we extend 
the radial symmetry routine by showing that the mathematical-machinery of least-squares fit 
can be used to calculate (per-image) error estimates. 
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Image noise has an overwhelming influence on gradient-direction for pixels with low-
magnitude gradients, i.e. intensities similar to their neighbors, see cyan “x” in Fig. 2(b). Con-
sequently, noise biases the solution to Eq. (1) towards the center of the image. 

The poor susceptibility to noise of the unweighted algorithm is due to two factors. First, 
pixels far away from the true symmetric origin collectively contribute greatly to the error 
function given in Eq. (1). Provided that the particle center can be roughly estimated by COM 
via Eq. (21), for example, then an exclusion filter can be applied [10]. Second, because the 
effect of image noise is most pronounced in areas where the gradient is shallow, those pixels 
inordinately bias the calculation. A solution is to also weight the least-squares fit as a function 
of the magnitude of the image gradient, using weighting matrix 

 

0 0
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where ( )
i

f r defines the exclusion distance, and determines the weighting of gradient. The 

weighted least-squares solution becomes 

 ,T -1 T= (A WA) A Wbx  (5) 

where W is the diagonal matrix defined in Eq. (4). In the original implementation, Par-

thasarthy somewhat arbitrarily chose
2

ii

i

W
r

I∇
= ; however, as discussed in the next section, 

this choice can be further optimized. 

2.2. Localization error estimation and optimal weighting function 

Building on the method outlined in Eqs. (1)–(5), we can extend the routine to also return (per-
measurement) localization error estimates derived from the image noise. Additionally, by 
statistically characterizing error we can determine the optimal weighting function, Eq. (4). 

For an un-weighted two-variable least-squares fit of N data points, the average residual of 
the estimate, x in Eq. (2), is given by 

 
2

2

2
σ =

−
- Ab x
N

 (6) 

and the standard error of x is given by the matrix 

 2σ= T -1SE (A A)  (7) 

In this context, the residual, defined as ,R = (b - Ax) corresponds to d defined in Eq. (1). For the 
weighted least-squares, the average residual becomes 
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and the weighted standard error of the estimate becomes 
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The weighted standard error, Eq. (9), is, in essence, a scaled multiple of the covariance ma-
trix. The eigenvectors and values of SE describe the orientation and scale of the major and 
minor axis of an ellipse which characterizes the fit precision. The larger of the two eigenval-
ues can be interpreted as the radius of a circle representing the “worst-case” precision esti-
mate for both x and y directions. In subsequent analysis and plots when refereeing to a scalar 
“weighted standard error” we mean the leading eigenvalue of SE. 

A good choice for the weighting matrix, W in Eq. (4), can be determined analytically and 
further optimized by numerical evaluation. If the entire image (or region of interest) is as-
sumed to have gradient vectors, which (in the absence of noise) point to the symmetric origin, 
then the propagation of error due to Gaussian-distributed image noise yields that the least-
squares minimizer, kd in Eq. (1), is expected to be distributed as 

2

0, 2 ,
| |

k
k

k

d
r

I
η σ
  
 ≈ ⋅  ∇  

(10)

where ( , )η μ ν signifies the gaussian distribution with mean μ  and varianceν ; σ corresponds 
to the standard deviation of the image noise. In other words, the least-squares minimizer’s 

bias can be compensated for by weighting the fit using 
2

2ii

i

I
W

r

∇
= . In practice, the intensity of

diffractive fringes for micron-scale particles illuminated with a roughly collimated beam de-
cay over a scale of several wavelengths. Consequently, pixels far from the symmetric center 
carry little useful information. In such cases, the optimal weight factor can be improved nu-
merically. Keeping the weighting factors in the form 

| | ,m n
ii i iW Ir ∇= (11)

the optimal exclusion distance-exponent m and gradient-exponent n can be determined by 
finding the values which minimize the weighted standard error, Eq. (9). For a given image 
morphology, the optimal values can be calculated by applying the algorithm to several repre-
sentative images and evaluating which exponent values yield the lowest weighted standard 
error. 

We generated patterns representative of bright-field imaged microspheres by first imaging 
a 2.8 µm diameter microsphere adsorbed to a glass slide using a 63×, 1.40 NA objective, 
brightly illuminated to maximize signal to noise. Next, the symmetry algorithm with weight 
exponent n = 2 in Eq. (4) and distance-dependence exponent m = 0 was used to determine the 
approximate center of symmetry of the image. Using the estimated center, x and y , each pix-

el was assigned a radial coordinate 2 2( ) ( )j i jir yx x y= − + +  . Finally, pixel intensities versus 

radial coordinate were fit with a smoothing spline (using MATLAB’s csaps function), yield-
ing a continuous diffraction profile I(r). Using I(r), images of arbitrarily located particles 
could be quickly generated by simply evaluating the function over a grid defined by the radial 
coordinate rij. Image noise was generated by adding a Gaussian-distributed random array

[ , ]i jη : 

[ , ] [ , ] [ , ]I
n i j I i j i j

SN
I

R

σ η= + (12)

where 
Iσ is the standard deviation of the image and SNR is the signal to noise ratio. Note: for 

image generation, SNR is a modifiable parameter dictating the strength of the noise; its effect 
is to attenuate the added noise, relative to the variance of the image data. A similar conven-
tion was used in [12]. Fit error, defined as 
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tor of the sub-step position [11,15,17,18]. Unfortunately, this scheme has two major draw-
backs. 

First, it does not account for image noise and positional error during LUT capture. Due to 
vibration, thermal drift, and limited precision in focusing hardware, it is very unlikely that a 
LUT can be sampled at consistent discrete intervals. Moreover, camera noise means the cap-
tured intensity is also expected to deviate from the “true” value. Consequently, each step of a 
LUT should be expected to fluctuate around its ideal value 

 [ [, ] ],j j i i i ijrI z I z rδ η+ +→  (15) 

This fluctuation is illustrated in Fig. 1(c) (inset). The example LUT was constructed by re-
cording the azimuthally averaged bright-field diffraction profile of a bead imaged over a se-
ries of roughly 20 nm-spaced focal steps. The intensity profile (along the R-direction of the 
LUT) is relatively smooth for each step due to the fact that image-noise is azimuthally aver-
aged-out; however, plotting a single radial position as a function of z reveals a significant 
amount of scatter, which if not accounted for directly translates to scatter in the least-squares 
residuals in Eq. (14). 

Second, this scheme relies on a quadratic fit in order to find the sub-step location. This is 
problematic because there is no guarantee that the residual versus Z is quadratic near the min-
imum. Moreover, noise also affects the reliability of the quadratic fit. If only three points (

2

*[ ]R z , 2

* ][ 1R z − , and 2

*[ 1]R z + ) are fit, the resulting parabola will pass through each point, 

meaning the vertex is susceptible to noise-induced bias. On the other hand, more points will 
not necessarily follow a parabola and the resulting vertex would not correspond to the best Z-
estimate. 

2.4. Sub-step z-localization using non-linear least-squares 

The calculation performed in Eq. (14) is essentially a discrete-version of a non-linear least-
squares (NLS) optimization problem. If the LUT, ][ ,j iI z r , is replaced with a set of continuous 

functions, ( )
ir

f z , which interpolate between the sampled points 

 

1 1

( ) [

[ , ( ) [

, ]

] ],

,

,− −<


 ≡ =


< < <

i

i j

r j i j

j i r j i j

f z I z z z

I z r z I z r z z z

r

f

 (16) 

then Eq. (14) transforms to a standard (continuous) NLS problem. The sub-step location can 
be found by minimizing the function 

 ( )2
( )( ) ,

i ir r
i

f z z zz Iφ − == TR( ) R( )  (17) 

with
ir

I corresponding to the measured profile, and residual ( ) ( )
i ii r rR z I f z= − . The value ẑ

which simultaneously minimizes each residual can be found numerically using the Gauss-
Newton method [20]. 

2.5. Spline interpolation of LUT 

The optimal choice of continuous fitting-functions, Eq. (16), used to describe the LUT re-
quires some consideration. In the absence of a physically motivated equation, the choice of 
fitting functions seems somewhat arbitrary. Rather than attempt to fit each oscillatory profile 
function, ( )rf z , to a single polynomial, trigonometric series, or any other global function, we 

use piecewise cubic splines functions. Spline functions have the distinct advantage of being 
simple to compute while still closely matching the fitted data over the entire range. Generic 
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splines tend to over-fit data, resulting in oscillations between knot-points, which would be 
both non-physical and problematic for numerical minimization. To overcome this problem, 
we use Reinsch-type smoothing splines, which are designed to simultaneously minimize fit-
ting error and total curvature, Eq. (34) [21]. Standard implementations of Reinch-type 
smoothing splines create a knot-point at each unique value of the independent-variable passed 
during the fit. For LUTs with a large number of samples this creates an excessive number of 
knots, which increases the computational burden in finding the knot corresponding to the 
lowest residual. To circumvent this problem, we use a knot-reduction routine to replace the 
set of smoothing-splines with cubic Hermite splines defined by a minimal set of knots, see 
Appendix for details. Reduction to Hermite splines was chosen because the Gauss-Newton 
method only requires that the first derivative be continuous and calculable, which is guaran-
teed to be true for the entire domain of a Hermite spline. As illustrated in Fig. 1(c) (inset), the 
knot-reduced smoothing-splines do a good job of capturing the slow oscillation of the data 
while simultaneously averaging noise. 

2.6. Implementation and error estimation of non-linear least-squares 

The Gauss-Newton optimization requires an initial guess, 0z , to start the calculation. Because 

the optimal Z-location, ẑ , is expected to be close to Z-value of the row in the LUT with the 
smallest residual, Eq. (14), that value, *

j
z , serves as a good starting point. Since splines are 

simply a set of polynomials, it is straightforward and computationally efficient to evaluate the 
function and its first-derivative at any point in its domain. As such, the Newton step, Eq. (32), 
can be computed quickly without numerical approximation. 

Similar to the error estimate for the 1-D linear least-squares problem, once the optimal z-
value is determined, the standard error of the estimate is given by 

 ( ) 12 ˆ ,ˆz z zσ σ
−

≈ ⋅ TJ( ) J( )  (18) 

where 2σ̂ is the sample variance 

 2 1
ˆ ˆ( ) ( ),

1
ˆ Tz z

N
σ =

−
R R  (19) 

and ( )zJ is the Jacobian of ( )zR . 
In summary, the LUT tracking routine starts with discretely sampling the depth-

dependency of the radial profile of a particle, Eq. (15). Then, interpolation of the discrete 
LUT using Reinsch smoothing splines, Eq. (34), simplified by recursive bisection (see appen-
dix, section 6), yields a continuous LUT defined by a set of functions, Eq. (16). During meas-
urements, the images of particles are compared in real-time to the continuous LUT using a 
Gauss-Newton solver, Eqs. (17) and (30)–(33), which returns the best-fitting Z-position. The 
statistical confidence of that fit is given by Eqs. (18) and (19). 

3. Results and discussion 

3.1. XY noise sensitivity comparison 

Localization algorithm performance was assessed using simulated images following the 
scheme described in Section 2.3. Generated images corresponded to diffraction profiles sam-
pled approximately 1 µm below the apparent focal plane of the particle (as determined by the 
narrowest “waist” of the diffraction pattern). That position was chosen because it lies within a 
typical calibration range used in tethered particle experiments [6,22]. Using the simulated 
images, we directly compared the noise-sensitivity and tracking performance of the radial 
symmetry routine against the performance of the convolution-based routines discussed in the 
introduction and outlined in the Appendix [12]. The results of each test are summarized in 
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0 to 1 and wavelengths varying from two-diameters (~280 px) up to 50-diameters (7000 pix-
el), locations were computed for 100 particle diffraction patterns simulated at random pixel 
coordinates in a 250 × 250 grid. Example images and results are summarized in Fig. 7. Even 
in the situation where the shading varies over distances just twice as large as the particle with 
intensity variations as large as fringes of the particle (i.e. 2 .Diaλ = ⋅ and A = 1), the average 
measurement error was less than one pixel. 

Fig. 7. Sensitivity of XY localization to shading. Images generated according to Eq. (20). For 
each shading amplitude, A, and wavelength λ, 100 particles in simulated images were located. 
Error bars are centered on the average absolute error and range from the lowest quartile to up-
per quartile. 

3.3. XY localization sensitivity to magnification and focal plane 

The symmetry routine also performs well over a range of particle sizes and for beads located 
on various focal planes. To test the sensitivity to magnification, images were generated as 
discussed previously, rescaled to varying degrees, and distorted with additive noise defined in 
Eq. (12). Even with SNR = 1, the localization error remains below 0.06 pixel over effective 
magnifications ranging from 21× to 63×, see Fig. 8(a). 

Similarly, sensitivity to particle focal position was tested by generating diffraction pat-
terns using the fringe pattern stored in the LUT illustrated in Fig. 1(b). The pattern was modi-
fied with additive noise and particles were localized. Tracking accuracy is relatively constant 
across the entire 10 µm range defined in the LUT. 
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require knowledge about how pixel intensity varies as a function of radius (as would be re-
quired by traditional PSF-fitting routines). We demonstrate that the routine works well for 
particles imaged via bright-field, even in the presence of significant image noise. Importantly, 
the routine also returns traditional confidence limits corresponding to standard error of the 
estimated position, providing a direct measure of the reliability of each computed location. At 
moderate to low noise levels (SNR > 2), the radial symmetry routine performs exceptionally 
well, yielding lateral error < 0.01 pixels. In addition to the lateral (XY) algorithms, we also 
present a noise-robust, look-up-table routine based on a Gauss-Newton, non-linear least-
squares solver. By using smoothing splines to interpolate between points of a finitely sampled 
data set, the LUT routine returns sub-step accuracy limited only by measurement noise. The 
only requirement is that the values of the LUT vary smoothly between steps. Otherwise it 
does not depend on the structure of the stored image data, and it works well for both bright-
field and fluorescent image stacks. 

5. Appendix

5.1. Intensity center of mass

For a grayscale image, the intensity center of mass (COM) is estimated by

, ,

, ,

ˆ ˆ,
[ , ] [ , ]

[ , ] [ , ]

x y x y

x y x y

x y
x y

I x y I x y

I x y I x y

⋅ ⋅
≈ ≈
 
 

(21)

5.2. Convolution based symmetry detection 

Provided the symmetry axes are parallel to the cardinal image dimensions (x and y axes), the 
symmetric origin can be estimated by finding the peak of the cross-correlation of the image 
with its mirror image [11]. In one dimension this corresponds to finding 

( )arg max ( ') ( ') ' ,symx I x I x x dx= − (22)

which is simply the position of the maximum of the image convolved with itself. Leveraging 
the convolution theorem, the argument of Eq. (22) can be calculated in 2D by 

( )1[ , ] ( [ , ]) ( [ , ]) ,C x y F F I x y F I x y− ⋅= (23)

where F and 1
F

− denote the Fourier (FT) and inverse Fourier transform. In the discrete form, 
the convolution, Eq. (23), yields the symmetric origin to half-pixel accuracy (see appendix for 
details). Typical fast 2D Fourier-transform (2D-FFT) routines require

2
logMN MN operations; 

hence, the number of operations required to compute Eq. (23) is
2

2 logMN MN MN+ . 

At the expense of increasing the computational complexity or the inverse-FT, the accura-
cy can be improved via sinc-interpolation. For example, quarter-pixel accuracy can be 
achieved by padding the FT with N-zeros in the x-direction and M-zeros in the y-direction, 
increasing the computation complexity to roughly 

2
4 log 2MN MN operations. An efficient alter-

native to sinc-interpolation is to locally fit [ , ]C x y with a paraboloid and use the vertex as a 
sub-integer estimate of [ *, *]x y . However, the true shape of [ , ]C x y depends on the image and is 
not guaranteed to be quadratic near its maximum. 

For an M-tall by N-wide image, the origin of symmetry can be determined by convolution. 
Assuming 1-indexing, the symmetric center ( , )

c c
x y is determined by 
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( ){
* *

*

,

*

}[ , ] arg max [ , ]

1

2 4 2

1
.

2 4 2

x y

c

c

x y C x y

x N
x

y M
y

=

= + +

= + +

(24)

Note: Eq. (24) holds true so long as the symmetric origin actually lies within
3 3

, , ,
4 4 4 4

N N M M
x y∈ ∈   

      
, otherwise due to the periodic nature of the FT cx and cy will be cir-

cularly shifted by N and M respectively. 
If sinc-interpolation is used to increase the resolution of the fit, the Fourier transform is 

zero-padded and the scaling-relationship in Eq. (24) changes slightly. Quarter-pixel accuracy 
corresponds to padding the FT with N-zeros in the x-direction and M-zeros in the y-direction, 
and then applying the inverse-FT to compute the convolution. The origin is then given by 

*

*

3

4 4 4

3
.

4 4 4

c

c

x N
x

y M
y

= + +

= + +
(25)

5.3. Smoothed image gradient 

To minimize the impact of additional noise resulting from finite differencing, we calculate the 

image gradient along ± 45°, with 
1

ˆ ˆ ˆ( )
2

u x y= + and ˆˆ ˆ
1

( )
2

y xν = − and apply a 3 × 3 smoothing 

filter, so 

[ ] [ ]
11

1 1

[ , ] ( 1), ( 1) ( ), ( )
ji

i j
u I x y I x i y j I x i y j

−=

=− =−

= − + − + −∇ − − (26)

and 

[ ] [ ]
11

1 1

[ , ] ( 1), ( ) ( ), ( 1) ,
ji

i j

I x y I x i y j I x i y jν

−=

=− =−

∇ = − + − − − − + (27)

yielding 

1
( )

2
k u k kIy I ν= +Δ ∇ ∇ (28)

and 

1
( ).

2
k u k kIx IνΔ −∇ ∇= (29)

5.4. Gauss-Newton method 

Starting from an initial guess, 0z , the solution, ẑ , that minimizes the objective function in Eq. 

(16) is iteratively found by computing the Newton step

( ) 1
( ) ( ),ks z zφ φ

−
∇= − Η (30)
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where φΗ is the Hessian of φ , and then updating the guess 

1 .k k kz z s+ = + (31)

The gradient of the objective can be written in terms of the Jacobian, )
(

(
)i

i

R
J z

z

z∂
=

∂
, 

( ) .( ) ( )Tz z zφ∇ = RJ (32)

For small residuals (i.e. good guesses) the Hessian converges to ( ) ( )z zφ = T
H J J . The equation 

defining the Newton step reduces to 

( ) ( )
.

( ) ( )

T

k T

z z
s

z z
= − J R

J J
(33)

Iteration is terminated when the magnitude of the residual is less than a specified tolerance, 
( ) ( ) TOL.

T
z z ≤R R

5.5. Smoothing splines 

Reinsch-type smoothing splines are defined by minimizing the function 

( )2 2( (1 ) | ''( ) | .)
j

i jE p y f x p f t dt= − + −  (34)

The sum in the first term on the right corresponds the least-square fit, while the integral in the 
second term corresponds to a minimization of curvature; p is a user-specified parameter 
which determines the relative weighting of the two factors. We chose

3 1

max min
/ ((1 ( )) )p Zz Z

−= + −Δ , where zΔ is the z-step spacing, relative to the range of measured

axial positions, of the LUT, because it qualitatively balances between over-fitting and over-
smoothing. 

5.6. Hermite spline knot reduction 

Smoothing splines are simplified by recursive bisection, similar to the strategy outlined by 
Dung & Tjahjowidodo [23]. First, the densely-knotted target spline is evaluated at 5 evenly 
spaced points spanning its range. The resulting values are fit with a piecewise cubic Hermite 
spline and divided in half, creating two segments. For each segment, the 2-norm residual dif-
ference is calculated between each knot in the original spline and resulting simplified Hermite 
spline. If the average residual is above a given threshold, the segment is sub-divided and the 
process repeated. 
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