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Compression and fracture of ordered and disordered droplet rafts
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We simulate a two-dimensional array of droplets being compressed between two walls. The droplets are
adhesive due to an attractive depletion force. As one wall moves toward the other, the droplet array is compressed
and eventually induced to rearrange. The rearrangement occurs via a fracture, where depletion bonds are quickly
broken between a subset of droplets. For monodisperse, hexagonally ordered droplet arrays, this fracture is
preceded by a maximum force exerted on the walls, which drops rapidly after the fracture occurs. In small
droplet arrays a fracture is a single well-defined event, but for larger droplet arrays, competing fractures can be
observed. These are fractures nucleated nearly simultaneously in different locations. Finally, we also study the
compression of bidisperse droplet arrays. The addition of a second droplet size further disrupts fracture events,
showing differences between ideal crystalline arrays, crystalline arrays with a small number of defects, and fully
amorphous arrays. These results are in good agreement with previously published experiments.
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I. INTRODUCTION

Foams, emulsions, and colloids are often used as models
for systems such as crystals and glasses [1,2]. Foams are gas
bubbles in a liquid, with the gas-liquid interfaces stabilized
by surfactant molecules. Emulsions are similar in that they
are droplets of one liquid in a second immiscible liquid, with
surfactants stabilizing the liquid-liquid interfaces. Colloids are
composed of solid particles in a liquid. The first published
work using bubbles to model crystals was done by Bragg
and Nye [3] and Bragg and Lomer [4]. These soft matter
systems can be used to study fundamental questions about
order-to-disorder transitions [5–13], jamming [8,13–17], and
crystal nucleation and melting [18–21]. More recently foams
have also been used to study biological systems [22–25].

A key feature of these systems is their response to ex-
ternal stress. The mechanical response of these dispersions
can be tuned by varying the composition [15,26–29]. It is
also well known that materials become harder to deform as
the volume fraction of the particulate phase is increased (that
is, the colloidal particles, droplets, or bubbles, depending on
the material) [30,31]. Once a volume fraction threshold is
reached, the system responds like a soft solid [27,30,32,33].
However, if enough force is applied, then the system will plas-
tically deform and flow. The relation between macroscopic
flow and local plastic events has been the focus of much work
[27,29,34–36].

One concern using soft materials as models for crys-
tals is that in contrast to atoms which are all identical,
the components of a soft material are typically somewhat
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polydisperse. Nonetheless, one can use low polydispersity
(nominally “monodisperse”) soft materials to model crystals
[3,37]. Such model systems allow one to investigate the effect
of local plastic deformations and disorder [10,38], which are
connected to the bulk properties of the crystal, such as yield
stress [6,8,10,37].

The mechanical properties of a glass, like crystals, is
heavily dependent on its microscopic structure, and this has
been studied in a variety of soft materials serving as model
glasses [1,5,7,9,13,21,38–43]. Prior studies examined how the
disordered structure of a glass affects a sample’s mechani-
cal properties [6,44–46]. It is of interest to contrast crystals
and glasses; for example numerical studies have shown that
adding even a small amount of defects into a crystal drastically
changes the mechanical properties of the resulting system
[1,5,7,9,13,38,41–43].

Experimental work by Ono-dit-Biot et al. examined the
ability of quasi-two-dimensional crystalline and noncrys-
talline samples to fracture under compression [10,37]. The
experiments consisted of a monolayer of oil droplets sus-
pended in an aqueous solution. The droplets packed into a
raft held together by depletion forces. The raft was then
horizontally compressed between two parallel walls, caus-
ing the droplets to rearrange. Nominally monodisperse rafts
formed hexagonal close packed configurations. During the
compression process, the hexagonal packing would undergo
coordinated fracture events. Each such fracture allowed the
crystal to reduce the number of rows by one, fitting into
the narrower space imposed by the confining walls, while
maintaining hexagonal order after the fracture event con-
cluded. However, when smaller droplets, which act as defects,
were substituted into the droplet array, the coordinated frac-
ture events were replaced by a series of smaller intermittent
fractures. With a sufficiently large number of defects, the
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samples behaved much more like a glass than like a disordered
crystal.

The goal of this paper is to computationally replicate and
extend the experimental results of Ono-dit-Biot et al. [10,37].
In particular, we expand on the prior results by simulating a
larger number of droplets with a greater variety of starting
configurations, allowing us to understand system size effects
that were untested in the experiments. Furthermore, we in-
vestigate the influence of experimental imperfections, namely
the role of imperfectly parallel compressing walls and under-
standing the role of polydispersity of particle sizes. We also
present analytic calculations which highlight the importance
of attractive interactions between droplets to the observed
results.

Our simulations include the three key forces present in
the experimental work: first, a repulsive force between the
droplets (or the droplets and the walls) that is due to surface
tension; second, an attractive force due to depletion from mi-
celles present in the experiments and modelled here with the
Asakura-Oosawa model [47]; and third, a dissipative viscous
force acting on moving droplets, although this is minimal
given the small velocities considered. Our simulations re-
produce the experimental observations, namely the fracture
events and their dependence on the particle size distribution.
We also investigate a new phenomenon where the crystal frac-
tures in multiple locations nearly simultaneously, disrupting
the packing postfracture, which occurs more frequently in
larger droplet arrays. Our work suggests that this phenomenon
was likely suppressed in the experiments due to a slight tilt of
the relative orientations of the two walls, taking them out of
parallel by ∼0.2◦–1.0◦.

II. COMPUTATIONAL METHODS

A. Simulation forces

Our goal is to have a simulation which captures the key
features of the prior work of Ono-dit-biot et al. [10,37]. We
use the Durian “bubble model” [34] to simulate the droplets’
motions as the array is compressed. In particular, we use
the modified version presented by Tewari et al. in Ref. [48]
which allows droplets to have different numbers of nearest
neighbors; our code is specifically adapted from that used in
Hong et al. [49,50]. The athermal bubble model simulates
the interactions between droplets in a viscous medium. The
model replaces the details of each droplet’s deformation with
a simple pairwise repulsive interaction. The model assumes
negligible inertial effects (appropriate for low-mass bubbles or
slow-moving emulsion droplets) and viscous interactions. For
our work we add the effect of attractive depletion interactions
between adjacent particles as well as between particles and
the walls.

The first step in our simulation is to generate the droplets.
For nominally monodisperse simulations, we assign droplet
radii according to a normal distribution with mean 〈R〉 = 1
and width δ = 1.25 × 10−3. This value is small enough to
represent a single droplet size, while still allowing for some
randomness that is inherent in the experiment. For a bidisperse
distribution, we generate droplets with radii Rlarge = 1 and
Rsmall = 0.765, the same radius ratio as in the experimental

FIG. 1. Snapshots for a 20-droplet simulation. In this simulation
the droplet is arranged in a p = 4 by q = 5 configuration.

work [10]. In all cases, the droplets are initially arranged in a
hexagonal closed packed lattice, with p rows and q columns.
Rows are defined as a set of q droplets aligned parallel to
the walls. An example is shown in Fig. 1 with p = 4 rows
by q = 5 columns.

Each droplet is modeled as a sphere, and the simulation
starts by calculating all forces acting on each droplet. The first
is an elastic repulsive force between droplets. If droplets i and
j overlap, then the repulsive force is

�F contact
i j = f0

[
1

|�ri − �r j | − 1

|Ri + Rj |
]
�ri j, (1)

where Ri is the droplet radius, their positions are �ri, and the
difference vector is �ri j = �ri − �r j . An overlap occurs when a
neighbor j is close enough to the droplet i such that |�ri j | <

Ri + Rj . Here f0 acts as a spring constant, the origin of which
is the surface tension induced Laplace pressure. In particular,
Eq. (1) avoids the need to simulate the actual deformation of
the droplets by replacing the deformation with this effective
force which is valid at low deformations, the regime of in-
terest. This linear (Hookean) response was observed in the
experiments [37].

The second interaction force between overlapping droplets
is a viscous force if the two droplets are moving at different
velocities:

�F viscous
i j = b(�vi − �v j ), (2)

with b being the viscous coefficient and �vi the velocity of a
given particle. This force acts on each droplet in a direction
that tries to bring their velocities into agreement: For example,
if droplet i is motionless, then the viscous force from droplet
j acting on i is in the direction of v j .

A final important force in the experiment is the deple-
tion force: An attractive force acting between droplets that
are sufficiently close. In the experiment, this is due to small
surfactant micelles. In the simulation this is modeled as an
effective force between neighboring droplets, which in this
case are droplets with distance ri j < Ri + Rj + 2as. Here as is
the radius of the depletant which thus sets the range of the at-
tractive interaction. The depletion forces are calculated using
the Asakura-Oosawa model [47]. The first step needed to cal-
culate the depletion interactions is to calculate the overlapping
volume between a pair of spheres with a radius R′

i ≡ Ri + as
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[51]:

Voverlap(ri j, R′
i, R′

j )

= π

12ri j
(R′

i + R′
j − ri j )

2

× [
r2

i j + 2ri j
(
R′

i + R′
j

) − 3
(
R′

i
2 + R′

j
2) + 6R′

iR
′
j

]
. (3)

Using the overlap volume we can obtain the associated
Helmholtz free energy, which we then differentiate to get the
depletion force:

�F dep
i j = φc

8a3
s

∂Voverlap(ri j, R′
i, R′

j )

∂ri j
r̂i j, (4)

where the direction of the force is attractive between the
two particles. In this formula, φc is a constant related to the
temperature and volume fraction of the depletant. In the sim-
ulation we set as = 〈R〉

20 = 1/20. The formula for ∂Voverlap/∂ri j

is

∂Voverlap(ri j, R′
i, R′

j )

∂ri j

= π

4

⎡
⎣r2

i j − 2
(
R′

i
2 + R′

j
2) +

(
R′

i
2 − R′

j
2

ri j

)2
⎤
⎦. (5)

In addition to calculating the droplet-droplet interactions,
we also need to calculate the droplet-wall interactions for
droplets sufficiently close to the wall. The repulsive force
from the wall is given by

�F wall,repel
i = f0〈R〉(r−1

wall,i − R−1
i

)
n̂wall, (6)

where rwall,i is the distance from the droplet center to the
wall. Note that this force diverges as rwall → 0, preventing
any droplets from passing through the wall. In particular this
form differs from Eq. (1) by using the unit normal vector n̂wall

rather than �rwall, which is what leads to the divergence. The
magnitude of the attractive depletion force between a droplet
and the wall is given by:

F wall,dep
i = πφc

8a3
s

(Ri + 2as − rwall,i )(Ri + rwall ) (7)

for every droplet with rwall,i < Ri + 2as. We will summarize
these two terms into

F wall
i = F wall,repel

i + F wall,dep
i ,

noting that the two components point in opposite directions
(and thus F wall

i can be zero if these two components are in
balance).

The Durian bubble model is originally for massless
bubbles [34], and in our situation we treat droplets in a
low-Reynolds-number limit for which inertial effects are neg-
ligible. Accordingly, the net force is always zero; the velocity
of each particle is always such that the velocity-dependent
viscous forces balance the other forces. Thus, we combine
Eqs. (1), (2), and (4) and solve for the velocity:

�vi = 〈�v j〉 + 1

bNi

∑
j

(
F contact

i j − F dep
i j

)
r̂i j + 1

b
Fwalln̂wall, (8)

where Ni is the total number of neighbors for particle i. We
use fourth-order Runge-Kutta to solve this differential equa-
tion for the velocities at each time step.

B. Model parameters

The model sketched above has many parameters. In this
section we discuss how these parameters are set based on
comparison with the prior experimental work (Refs. [10,37])
and on computational convenience. We start by fixing b = 1,
〈R〉 = 1, vwall = 10−4, φc = 10−4, f0 = 10, and as = 0.05.
Several nondimensional ratios allow comparisons to the ex-
periment.

First, the range of the depletion force is given by the ratio of
the size of the micelles and the size of the droplets. With mean
droplet radius 〈R〉 ≈ 20 μm, and depletion micelles which
have size as ≈ 5 nm, the experimental range is α

expt
1 ≈ 2.5 ×

10−4. In the simulations the range of the depletion interaction
is set to

αsim
1 = as

〈R〉 = 0.05. (9)

Here αsim
1 is larger than α

expt
1 , although still much less than 1.

This choice avoids numerical instabilities which would occur
if the depletion force was too short range.

Second, we need to understand the relative importance of
the depletion and viscous forces. In the experiment, this ratio
of forces is

α
expt
2 = vwallη

W
≈ 10−5,

where the viscosity η ≈ 1 × 10−3 Pa s, the depletion energy
per unit area between two droplets W ≈ 1 × 10−6 J/m2, and
the speed of the wall vwall ≈ 3 × 10−7 m/s [37]. In the simu-
lation, the same ratio is

αsim
2 = bvwallas

φc
= 0.05. (10)

In both the simulation and in the original experiments, the
depletion force is stronger. That being said, in the simulations,
the effect of viscosity is more significant than in the exper-
iment. This choice is to keep the simulation computational
time reasonable; reducing the viscosity coefficient b would
require a smaller integration time step.

Finally we compare the forces of repulsion and depletion
in the experiment:

α
expt
3 = k

W
∼ 104,

where k ≈ 10−3N/m is the spring constant associated with
the oil droplets’ surface tension [31,52]. In our simulations
we have

αsim
3 = f0as

φc
= 0.5 × 104.

These are the same order of magnitude; the factor of 0.5
difference means that the simulated droplets are slightly softer
than the experimental droplets. Adjusting the ratio in the sim-
ulation would again increase the computational costs, so we
judge our parameter choices to be a reasonable compromise
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between computational costs and adequately capturing the ex-
perimental limits (short range attractive forces, small viscous
forces compared to depletion, large repulsive forces compared
to depletion).

C. Simulation timescales

We need to choose the simulation time step carefully to
allow for the correct integration of all interactions. As shown
in Eqs. (1), (2), and (4), the magnitude of the different forces
are set by the constants f0, φc, and b for repulsive, deple-
tion, and viscous forces respectively. From these constants,
together with the speed of the walls, vwall, average droplet
radii, 〈R〉, and the depletant radius, as, we can define three dif-
ferent timescales: τ1 = 〈R〉b

f0
= 10−1, τ2 = ba2

s /φc = 25, and

τ3 = 〈R〉/vwall = 104. τ1 is the timescale for two overlapping
droplets to push apart in the absence of the depletion force and
is the fastest timescale. τ2 is the timescale for two overlapping
droplets to pull together due to the depletion force, which is
slower than τ1 because as noted above, the depletion force is
weaker than the repulsive force. Finally, τ3 is the timescale
for the walls to move a distance 〈R〉. Given these results, we
set the simulation time step to be 	t = τ1 = 0.1. We have
checked that simulations run with smaller time steps give the
same results as those run with 	t = 0.1. The implication of
τ1 � τ3 is that during rearrangements, the walls will move a
negligible distance.

D. Simulation goals

Given that the simulation parameters are chosen to match
the experiment to a reasonable extent, it is worth stating what
we wish to replicate. The experiment measured forces exerted
on the moving walls and related these forces to the effective
spring constant of two interacting droplets due to the depletion
force [37]. Our wall forces likewise must relate to the effec-
tive spring constant in our simulation, so we consider this in
Secs. III and IV. This is not a replication per se so much as
allowing us to illuminate the importance of both compressive
and tensile forces acting between droplets. That being said,
one important experimental observation to replicate is the
relationship between the wall forces, array size, and effective
spring constant acting between a pair of droplets, which will
be examined in Sec. IV A.

One experimental observation to replicate is how the forces
on the walls are changed when the droplet array has a mixture
of particle sizes. When the experimental droplet array con-
sisted of a nearly 50/50 mixture of large and small droplets,
the array rearranged in a nearly continuous sequence of small
fracture events; however, this observation was limited to a
23-droplet array [10]. We wish to replicate the observations
and extend them to larger array sizes.

Finally, moving beyond replication, we will examine how
the fractures depend on the system size, droplet polydis-
persity, and wall tilt angles: Factors that are easier to vary
smoothly in the simulation as compared to experiment.

III. ANALYTICAL RESULTS

We wish to understand the force required to compress the
droplet array. We start by considering the effective spring

constant between two droplets. We then consider compressing
three droplets. Due to the attractive depletion force, compress-
ing three droplets requires one effective spring to be stretched
while the other two are compressed. In this section we take
Ri = Rj = R = 1.

A. Effective spring constant: Two droplets

For two droplets in contact the balance of repulsive and
attractive forces in equilibrium lead to a harmonic interaction
with an effective spring constant. Balancing Eqs. (1) and (4),
the equilibrium distance between two particles can be approx-
imated as

deq = 2R − 2as

(
L2

2R2
− 1

)−1

, (11)

using

L2 = 8 f0a3

πφc
. (12)

We can use two of the nondimensional ratios analyzed in
Sec. II B, the range of the depletion forces α1, and the ratio
of repulsion to depletion forces α3 to write

L2

R2
= 8

π
α2

1α3 = 100

π
= 31.8. (13)

By substitution of Eq. (13) into Eq. (11), we see that the term
multiplying as has a small value for our simulations so we will
define:

ε =
(

L2

2R2
− 1

)−1

≈ 0.0671. (14)

We can then finally write the equilibrium position as

deq = 2(R − asε) ≈ 2(1 − 0.00336) ≈ 1.993. (15)

As expected the equilibrium position would be at 2R if deple-
tion was not present. With depletion, the equilibrium position
is adjusted by a small fraction of the depletant radius as.
With the parameters used in the simulations the particles
overlap but just slightly. (In the experiment, this implies that
the droplets would be slightly deformed due to the depletion
force. Given that α

expt
3 ∼ 104, the experimental deformation is

likely unobservable.)
At this point we can calculate the effective spring constant

response for monodisperse droplet-droplet interactions due
the balance of depletion and repulsion. Using both Eqs. (1)
and (4), and doing a small displacement from equilibrium
	ri j , results in the force increasing by

	F =
(

f0

2R
− Rπφc

8a3
s

)
	ri j = k1	ri j, (16)

which leads to

k1 ≈ 4.69 (17)

as the effective spring constant for droplet-droplet interac-
tions. The depletion force slightly reduces the spring constant
from that due purely to repulsion, which is f0/(2R) = 5.

We can similarly calculate the energy associated with
breaking a depletion bond. In this case we must calculate the
work needed to separate two droplets from their equilibrium
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separation, deq, up to the the point where depletion turns off,
doff = Ri + Rj + 2as,

Edepletion = − φc

8a3
s

∫ doff

deq

∂Voverlap

∂ri j
dri j = φc

8a3
s

Voverlap

∣∣deq

doff
.

The minus sign is due to the fact that the motion to separate
the droplets opposes the depletion force. Since there is no
overlapping volume at doff = Ri + Rj + 2as, we have only the
equilibrium volume:

Edepletion = φc

8a3
s

Voverlap(deq ). (18)

However, since the equilibrium distance is less than the radius
of the droplets, we must also take into account the repulsive
force’s work, which assists in separating the droplets:

Wrep = f0

∫ Ri+Rj

deq

(
1 − ri j

Ri + Rj

)
dri j, (19)

and so the corrected term for the energy needed to break a
bond between two droplets is the difference between Eqs. (18)
and (19):

E1 = φc

8a3
s

Voverlap(deq ) − f0(Ri + Rj − deq )2

2(Ri + Rj )
. (20)

Using Eqs. (11) and (13), we can simplify this further to

E1 = φc

8a3
s

Voverlap(deq ) − 2 f0a2
s ε

2

R
. (21)

We can now replace all the values by the corresponding con-
stants, and for deq and L2 from Eqs. (11) and (13), respectively,
which gives us the energy stored per bond in the monodisperse
case:

E1 = 0.00173. (22)

We can repeat a similar calculation for the effective spring
constants and bond energy present at the walls, and obtain

kwall
eff = 9.57 = 2.04k1, (23)

and

Ewall
1 = 0.00340 = 1.965E1. (24)

B. Equivalent spring model for three droplets

We next consider the compression of three monodis-
perse droplets in an equilateral triangle arrangement, shown
schematically in Fig. 2(a). In this case we start with two rows
of droplets and the compression causes a rearrangement to
one row. As the top wall moves towards the bottom wall,
the droplet cluster attaches to the two walls due to depletion
forces. Initially the bonds to the walls are all under tension
due to the depletion force, pulling on the two walls. As the
distance between the walls continues to decrease, the droplets
go through equilibrium [Fig. 2(b)] with the spacing between
each pair of droplets being deq [Eq. (11)]. As the compression
proceeds, the force continues to rise as the distance between
the walls decreases [Fig. 2(c)]. During this process, the diag-
onal bonds compress while the horizontal bond between the
two droplets on the bottom wall is under tension. Eventually

(a)

b)

c)

d)

e)

a)

(c) (b)(d)

FIG. 2. [(a)–(d)] Consecutive snapshots of the row reduction for
three droplets: Note that time increases from right to left, to match
panel (e). Blue bonds are under tension, whereas red indicates com-
pression. In panel (a), as the walls move together, the three droplets
attach to the walls due to depletion and thus exert tension on the
walls, resulting in the negative force peak seen in panel (e) at distance
(2 + √

3)R ≈ 3.73. As the top wall continues to move closer to
the bottom wall, the droplets go through equilibrium [panel (b)],
and eventually the walls begin compressing the droplets [panel (c)],
leading to rise in the force on the walls. At the peak of the force, the
horizontal bond between the two left particles is under tension. When
this bond between the two bottom droplets breaks, the force rapidly
drops [panel (d)].

this horizontal bond breaks, which allows the diagonal com-
pressed bonds to relax [Fig. 2(d)]; from this point onward
the droplets will continue to move with only the viscosity
resisting their motion until they are reduced to a single row
of droplets (not shown). In Fig. 2(e) we plot the force on
the walls as a function of the distance. Time is advancing
from right to left. The linear rise of the force from position
(a) to position (c) indicates that the the array is compressed
elastically, until the vertical bond breaks at (c) and the row
reduction occurs.

To explain the elastic rise in force [positions (a) to (c) in
Fig. 2(e)], we note that each droplet bond has spring con-
stant k1, which can be used to calculate the equivalent spring
constant for the triangular array. For these three droplets, the
compression force between the two left droplets and the left
wall is half that of the compression force of the single droplet
on the right and the adjacent wall. To find a relationship be-
tween the force F exerted by the walls on the droplet pack and
the horizontal displacement of the walls from the equilibrium
position (when F = 0), we start by considering the situation
sketched in Fig. 3(a): The left two droplets only move in the
y direction, with the top droplet moving up by 	y and the
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(a)

(b)

FIG. 3. (a) Sketch of small displacements of three droplets.
(b) Free body diagram of forces acting on the top left droplet. F/2 is
from the wall, with the other F/2 contribution acting on the bottom
droplet. The vertical spring is stretched by 2	y, so accordingly the
force indicated as 2k2	y is a tension force from the bottom droplet.
The k1	r force is a compression force from the right side droplet. As
the droplets are monodisperse θ = 30◦. Changes in θ for small 	x
and 	y can be ignored to first order.

bottom moving down by 	y; and the right droplet moves left
by 	x under the action of the force F . (To be clear, this is
in the reference frame where the left droplets do not move
horizontally. In practice, all three droplets move horizontally
under the influence of the walls, with the net horizontal dis-
placement between the right droplet and the left droplets as
	x.)

A free body diagram for the top droplet is shown in
Fig. 3(b). For the moment we will consider the vertical bond
between the two left droplets to have spring constant k2 in
order to illustrate the role of tension, but since the spring
constant is the same (for small displacements) whether under
tension or compression, we will eventually set k2 = k1. The
distance between the top droplet and right droplet is initially
deq. When the droplets begin to move, the change in this
distance is

	r ≈ 	x cos θ − 	y sin θ. (25)

This expression is valid in the limit where 	x,	y � req,
and changes to the angle θ due to droplet movement can be
ignored as they are a second-order correction. This formula
for 	r has been chosen with signs so that 	r > 0 when the
droplets are being compressed, consistent with the direction
of the force indicated in Fig. 3(b). Balancing the two forces in
the vertical direction gives

	y = k1 sin θ cos θ

k1 sin2 θ + 2k2
	x, (26)

which relates the horizontal and vertical displacements.

If we take the extreme case where k2 → ∞, then Eq. (26)
gives us 	y → 0, as no matter how much we push, the two
vertical droplets are stuck together at a fixed separation. On
the other hand, if there is no adhesion force, then k2 = 0 and
	y = cot θ	x, which corresponds to the droplets displacing
as needed to accommodate the right droplet moving leftwards
(and thus keeping 	r = 0). Finally for the case we consider
in the simulations, k1 = k2 and θ = 30◦, giving:

	y =
√

3

9
	x ≡ C	x. (27)

This is indeed the relation between the displacements that we
observe in the three droplet simulation.

Substitution of Eq. (27) into Eq. (25) for 	r, and balancing
the horizontal forces in Fig. 3(b), leads to

F = 2k1 cos θ (cos θ − C sin θ )	x. (28)

This expression relates the wall force F to the compression
	x of the three droplets; the term in front of 	x is an ef-
fective spring constant equal to (4/3)k1. Note that the term
with C, which allows for the vertical motion of the two left
side droplets, reduces the effective spring constant slightly
(as the ratio of the second term to the first is C tan θ = 1/9).
Again to understand the role of the tension force between the
two vertically oriented droplets, we consider the limits for C.
If k2 → ∞, then C = 0 and the effective spring constant is
equal to (3/2)k1. Intriguingly, this is the result one gets for
two springs in parallel, in series with one spring, which apart
from the diagonal connections is what we see in Fig. 3(a). In
contrast, if k2 = 0, then C = cot θ and the term in parentheses
would be zero, thus resulting in F = 0. Thus the tension bond
plays an important role in generating the wall force.

In addition to the springlike interaction of the three com-
pressed droplets, there are also springlike interactions with the
walls. At the left side wall, because there are two droplets,
the effective wall interaction behaves with spring constant of
2kwall; on the right side we have simply kwall. These three
springs act in series, so thus the overall effective spring con-
stant the system has is

1

keq
= 1

2kwall
+ 1

kwall
+ 1

2k1(cos2 θ − C sin θ cos θ )
, (29)

which simplifies to 0.673k1 = 3.16 using Eqs. (17) and (23).
This is exactly the value we measure from the slope of the
elastic regime in Fig. 2(e), matching to the three significant
figures we have been using. The close agreement is perhaps
a bit surprising, given that the analytic calculation has been
assuming small displacements, whereas the simulation uses
the full form of the depletion interaction. The agreement also
confirms that our wall speed is slow enough that viscous
forces are not adding significantly to our measured wall force.

We can also relate the energy required to break one
depletion bond [Eq. (21)] to the force peak Fp. Ignoring
energy stored in compressive interactions, the elastic energy
keq	x2/2 gets converted into breaking 	n bonds, so we have

E1	n = 1

2
keq	x2 = F 2

max

2keq
. (30)
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(a) (b) (c)

FIG. 4. A 7 × 7 droplet array in its initial configuration under-
going a row reduction. In (a) we can see that the array is being
compressed between the walls, as evidenced by the red compres-
sion bonds. The blue tension bonds run parallel to the walls, with
the depletion force preventing the crystal from spreading along the
direction of the walls. In (b) a global fracture has occurred, splitting
the crystal into four separate pieces and relaxing the forces; many
droplets are close to their equilibrium separation distance. In (c) the
crystal settles into a 6 × 8 hexagonal-close-packed configuration and
the depletion forces pull the droplets and walls closer together. The
extra droplet is in the second column. Movie S1 in the supplemental
material depicts the compression process for the array shown in this
figure [53].

From the data in Fig. 2, we have 	n = 1, keq = 3.16, and
Fmax = 0.110 leading to E1 = 0.00191 which is 10% larger
than the prediction of Eq. (21). The discrepancy is precisely
because of the extra energy stored in the compressed droplets.
The extra energy gets converted into droplet motion once the
bonds under tension are broken.

IV. COMPUTATIONAL RESULTS FOR
LARGE DROPLET ARRAYS

A. Equivalent spring model for nominally monodisperse crystals

We will next consider the general case of a nominally
monodisperse rectangular array of droplets with p rows and q
columns. We will consider the specific example of a 7 × 7 ar-
ray but also, where relevant, discuss results from simulations
with other numbers of droplets. Figure 4 shows this 7 × 7
droplet array undergoing a row reduction from p = 7 to p = 6
rows. A video of the compression process for this particular
simulation is available in the supplemental materials Movie
S1 [53]. All simulations are initialized by placing the droplets
in a perfectly ordered array; one such initial state is shown in
Fig. 4(a), which corresponds to the system before a fracture.
The red lines indicate compression forces and the blue lines
indicate tension forces. The tension is caused by the depletion
forces between droplets along the vertical direction (parallel
to the walls), therefore separating the droplets apart, pulling
against the depletion force which holds the crystal together. In
Fig. 4(b) the global fracture has broken the crystals into four
distinct pieces. The forces decrease in magnitude, indicated
by the light pink and light blue lines, showing the compression
and tension in the crystal has been relieved during the fracture.
Each piece moves as an essentially solid assembly; the relative
position of the droplets within this assembly does not matter,
and droplets at the boundaries move similarly to those in the

FIG. 5. Force on the left wall as a function of the distance be-
tween the walls for a 7 × 7 monodisperse droplet array. The distance
starts large and decreases, so time increases from right to left. Each
successive peak is taller than the last, due to the increased amount
of bonds that need to be broken. The blue and red slope are used to
obtain keq, as in seen in the inset.

middle. Finally in Fig. 4(c) a new crystal with p = 6 rows
forms, with tension pulling the droplets back into a hexagonal
configuration. In this case the walls experience a tension force
from the attractive depletion bonds which are not yet at their
equilibrium position.

Clearly during the compression process the force exerted
by the droplet packing on the walls varies in both magni-
tude and direction. In Fig. 5 we plot the force exerted on
the left wall as the crystal is compressed and undergoes row
reduction. Note that time increases from right to left, as the
horizontal axis is the distance between the walls which de-
creases with time. We wish to understand the features of this
graph, and will start with the easiest: during the compres-
sion force minima (F < 0) occur. These correspond to the
droplets nestling into a new hexagonal arrangement, being
pulled in together by depletion forces, and pulling on the wall
as the droplets settle into this more compact arrangement.
An example of this corresponds to Fig. 4(c) where all the
bonds perpendicular to the wall are under tension: The more
compact configuration exerts this tension on the walls due to
the attractive depletion force.

We next turn to the question discussed previously for two
and three droplets: What is the effective spring constant of
this droplet array? The inset in Fig. 5 shows the increase of
the force from zero as a function of the compression from the
equilibrium position for the first row reduction (red) and the
last (blue). The dashed lines in the inset show the linear fit
used to obtain the keq for that row transition. We can see that
once the walls begin compressing the crystal the force rises
monotonically, with the crystal responding elastically until
finally a catastrophic fracture event occurs. This is due to the
tension forces being sufficient to break the depletion bonds
between the droplets along the fracture. At large compression
(blue data points) the force is less than expected, as when
the array is down to two layers, being compressed into one
layer, the bonds at the ends of the array break first and relieve
some of the wall force while the bonds in the middle are
still intact. That is, the fracture does not occur everywhere
simultaneously.
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FIG. 6. Linear fit for the compression of the equivalent spring
constants, as a function of the aspect ratio of the array q/(p + 1) for
a 49 droplet array. Using Eq. (31) and the linear fit gives us the spring
constant for a single droplet, k1 = 7.08 ± 0.6.

The effective spring constant is larger when the droplet ar-
ray has fewer rows and more columns. This can be understood
by a generalization of the spring model to bigger arrays. We
have a rectangular array of p rows (parallel to the walls) and q
columns; the equivalent spring constant is therefore that of a
matrix of p springs in series and q springs in parallel. The in-
teractions with the two walls, with spring constant kwall ≈ 2k1,
has the effect of adding an additional row. This leads to the
following equation that relates the equivalent spring constant
keq to the spring constant of a single droplet k1:

keq = q

p + 1
k1. (31)

In general Eq. (31) is a simplification as it ignores the effect
of the springs under tension, as described for three droplets in
Sec. III B. Nonetheless this is a useful approximation. For the
red slope in Fig. 5 we get k1 = 5.27, and for the blue slope
we get k1 = 7.65. The higher k1 for the blue data is because
at this point the droplet array is quite wide and to compress
the array requires nontrivial motions at the edges of the array
as will be discussed below. These large edge motions lead to
viscous forces which increase keq and thus the measured k1.
These measured values for k1 are about 12–15% larger than
the true value of k1, illustrating the enhanced elasticity due to
the tension bonds.

For each row reduction we perform a linear regression on
the force as a function of compression distance and obtain the
corresponding value of the equivalent spring 	F = keq 	x.
The graph of keq is shown in Fig. 6 and is linear as a func-
tion of q/(p + 1) as predicted by Eq. (31). As the crystal is
compressed q/(p + 1) grows and therefore keq grows as we
have a larger number of springs arranged in parallel and fewer
in series. The linear fit of this graph gives k1 = 7.08 ± 0.5,
which is higher than our theoretical k1 = 4.69 [Eq. (17)].
This procedure was repeated for different runs with the same
crystal configuration (thus different realizations of our slight
polydispersity), as well as for arrays containing 20 to 400
particles, obtaining a mean value of k1 ≈ 6.1. As with the
individual measurement of keq discussed above, the likely
cause of the higher k1 is due to the viscous forces acting

on the larger droplet array, as well as the breakdown of the
approximations used to calculate k1.

To understand how the viscous forces affect our system,
consider a row reduction transitioning from p to p − 1 rows,
for example as shown in Fig. 4 with p = 7 initially. The num-
ber of columns q is a function of the total number of droplets
N and p, and thus increases from q = N/p to q′ = N/(p − 1).
We will continue by analyzing the displacement of one of the
droplets at the edge of the configuration—that is, at the top
or bottom of a row. Before the row reduction the rows of
the array have length 2Rq, and 2Rq′ afterwards. Taking the
center of the array to be our origin, the displacement of an
edge droplet during this row reduction is

dedge = N

p − 1

2R

2
− N

p

2R

2
, (32)

where we have divided by two as the array expands symmet-
rically around the origin. The time needed for this transition
to occur is the time needed for the walls to move the distance
of one row, t = √

3R/vwall. Dividing Eq. (32) by t we obtain:

vedge = vwall√
3

[
N

p(p − 1)

]
. (33)

Based on Eq. (33) we can see that the speed of an edge droplet
depends on the size of the array, as well as which transition it
is. Replacing Eq. (33) into Eq. (10) for αsim

2 we have

α
edge
2 = 1√

3

[
N

p(p − 1)

]
αsim

2 . (34)

For the first transition in Fig. 4, we have N = 49, p =
7, and thus α

edge
2 = αsim

2 49/(42
√

3) ≈ 2αsim
2 . For the last

row reduction starting with p = 2, this becomes α
edge
2 =

αsim
2 49/(2

√
3) ≈ 14αsim

2 ≈ 0.7. This shows that during the
last row reduction, for the edge droplets the viscous forces
are now comparable to the depletion forces, even for an array
of modest size with N = 49.

We verified this computationally using N = 49 and using
half and double our usual value of vwall. As expected, the
simulations running at double the wall speed had more sig-
nificant viscous effects for the last row reductions, while the
simulations running at half the wall speed had less noticeable
viscous effects.

The next feature of Fig. 5 to explain is the peaks in the
force. As the number of rows is reduced and the number
of columns increases, Fig. 5 shows the force required for
the fracturing increases significantly. This is because more
depletion bonds need to be broken.

As we did previously for the three droplet case, we can
obtain the depletion energy per bond from the force peaks
for each transition, continuing from Eq. (30) which we can
rewrite as

Fmax = √
2E1keq	n, (35)

where 	n is the number of bonds broken during the row
reduction. To rewrite this equation we will use Eq. (31) to
replace keq with k1 and N = p × q to eliminate q. We will
additionally assume that the number of broken bonds per
transition is 	n = 2q, which is true when the array fractures
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FIG. 7. Evolution of the normalized peak height as a function of
(p3 + p2)−1/2 for a different variety of starting configurations. The
solid line represent the values predicted by Eq. (36). The discrepan-
cies at the right side are due to the increasing influence of viscous
forces, which become more significant for large arrays with small p.
The right-most data correspond to p = 4.

into equilateral triangles, as was the case in the original exper-
iments. This leads to

Fmax = 2N

√
k1E1

p3 + p2
. (36)

To test this we plot in Fig. 7 the force peaks Fmax divided by
the total number of droplets N in each simulation as a function
of the (p3 + p2)−1/2 for a wide range of N and p. The solid
line shows the prediction of Eq. (36) using k1 and E1 from
Eqs. (17) and (30).

Figure 7 shows that most force peaks exceed the expected
value corresponding to Eq. (36). There are several reasons
for this difference. First, Eq. (36) uses k1 which neglects the
influence of the tension bonds. Second, viscosity dissipates
some of the energy the walls put into the system, which is
more significant for bigger arrays and when the arrays have
fewer rows p [thus higher (p3 + p2)−1/2]. With fewer rows,
the bubbles at the ends of the array must move faster to reach
the new configuration, while the wall keeps moving at the
same speed; see Eq. (34). Equation (34) also shows that larger
arrays (larger N) have larger viscous forces, in agreement
with what is seen in Fig. 7. Third, there are situations where
	n > 2q (caused by more complex fracture events) which
will be discussed in Sec. IV C, which thus increases Fmax.

To summarize, we have successfully replicated the ex-
perimental observation that each successive row reduction
requires greater compression, as there are more depletion
bonds that need to be broken [10]. Like the experiments, we
successfully relate the spring constant of a single droplet to
the array aspect ratio dependence of the wall forces [37]. Our
results also illuminate the influence of viscosity (in Fig. 7),
which is more observable in the simulations due to the larger
nondimensional number αsim

2 [Eq. (10)].
The equivalent spring model is therefore a useful tool for

understanding the characteristics of a nominally monodis-
perse droplet array as it is compressed. In the next section we

(a) (b)

(d)

(f)

(h)

(c)

(e)

(g)

FIG. 8. Evolution of the force profile as the defect fraction φ in-
creases. The more bidisperse the aggregates becomes the noisier the
force profile; the individual fracture events involving many droplets
split into a broad sequence of smaller fractures. The images in the
right columns are snapshots from the state prior to compression of
the system at distance 8.

will take a closer look at the behavior of arrays which are no
longer considered monodisperse.

B. Bidisperse aggregates

As seen in the previous section, a raft made up of low
polydisperse droplets is a model crystalline packing. In this
section we introduce defects and increase the polydispersity
of the simulated samples to study these new aggregates during
compression, which more closely resemble glassy materials.

We start by analyzing the behavior of bidisperse aggre-
gates. In these arrays the particles can have a radius of either
R = 1 or R = 0.765 (to match the experiments of Ref. [10]).
We define the defect fraction φ as

φ = Nsmall/Ntotal, (37)

where Nsmall is the number of smaller droplets in the aggre-
gate, and Ntotal is the total number of droplets. The defect
fraction φ varies from zero to 1. In the case where φ = 0
or φ = 1, we return to the monodisperse case seen in the
previous section, corresponding to a crystal made exclusively
of large or small droplets.

Figure 8 shows how the force profile changes as we substi-
tute differently sized particles in a 20 droplet array, becoming
progressively more disordered as the fraction of defects rises
from φ = 0 to φ = 0.5. (The compression process is shown
in Movies S2 and S3 in the supplemental material [53]). Fig-
ure 8(a) shows the force profile for the monodisperse droplet
aggregate shown in Fig. 8(b), which as discussed in the previ-
ous section shows clear force peaks connected to well-defined
row reductions. Introducing a single small droplet results in a
force profile and droplet array shown in Figs. 8(c) and 8(d).
This single defect causes the appearance of smaller peaks,
signaling additional smaller fracture events and thus a more
disordered row reduction. Figures 8(e)–8(h) show the force
profile and initial droplet configuration for φ = 0.25 and φ =
0.50. Introducing more defects introduces more small force
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FIG. 9. 	N (φ) normalized by the fitting parameter 	Npeak for
five different droplet arrays. The dashed line corresponds to the
prediction of Eq. (38). Four of the data sets correspond to simulation
data, while the points with the star marker are from the experimental
data of Ono-dit-Biot et al. [10]. The experimental droplet array
consists of 23 particles in three columns containing eight, seven, and
eight particles.

peaks. At a defect fraction of φ = 0.5 there are no distinct
“row reductions” but rather a nearly continuous series of small
fractures.

In the prior experimental work, Ono-dit-Biot et al. devel-
oped a predictive model for the number of peaks in the force
profile for a compressed aggregate [10]:

	N (φ)

	Npeak
= 2

√
(1 − φ)φ, (38)

where 	N (φ) = N (φ) − N (0) is the excess number of peaks
N (φ) observed for a given defect concentration over the num-
ber of peaks N (0) for the original aggregate [N (0) is the
number of starting rows minus one], and 	Npeak is a fitting
parameter to the highest amount of peaks for a given droplet
configuration.

The prediction given by Eq. (38) describes the simulation
data well, as shown for four examples in Fig. 9 where the
data have been scaled in each case by the 	Npeak that best fits
each data set. Furthermore, this data collapse agrees with the
experimental results of Ref. [10] (star symbols in Fig. 9), and
extends their 3 × 8 array results up to an 18 × 20 droplet ar-
ray. Above this size, the peaks from individual fracture events
begin to blur together around φ ≈ 0.5, making it challenging
to correctly measure N (φ).

We can also consider how the bidisperse sample com-
pares with a nominally single-component sample composed
of polydisperse particles. To do this, we use particles with
sizes distributed according to a Gaussian, characterized by
polydispersity δ defined as the standard deviation of the dis-
tribution divided by the mean. Figure 10 shows the amount
of fracture events occurring during the whole compression as
a function of polydispersity. The blue squares correspond to
the Gaussian distribution, and the red circles correspond to
the bidisperse distributions considered above, now plotted as
a function of δ calculated from each distribution’s standard de-
viation and mean size. For the discrete bidisperse data set, we
have used the 4 × 5 droplet case previously shown in Fig. 9.

FIG. 10. N pini→1 as a function of the polydispersity δ for the
discrete 4 × 5 bidisperse case used in Fig. 9, and a continuous size
distribution. The amount of fractures events depends on the chosen
size distribution, with the discrete case increasing somewhat lineally,
while the continuous case grows nonlinearly. The dashed line cor-
responds to the prediction of Eq. (38). For the bidisperse case δ(φ)
is not symmetric between φ and (1 − φ), so thus Eq. (38) has two
branches as shown [54].

The continuous polydispersity case has many more fracture
events than the bidisperse distributions with equivalent δ.
Examining the individual movies, the increase in fracture
events is because the case of continuous polydispersity acts
to introduce weak points into the array in many locations
simultaneously. That is, the continuous polydispersity case is
somewhat analogous to a bidisperse array with φ ≈ 0.5 and a
size ratio that grows with increasing Gaussian width δ.

C. Competing fractures

The larger disorder in the fracture process when adding
defects is expected. We additionally observe a new behavior
in droplet aggregates even with low polydispersity not seen in
Ref. [10]: competing fractures. In Sec. IV A we focused on the
compressed crystal undergoing single coordinated fractures
resulting in a change from one hexagonal array to a smaller
array with one fewer row. However, sometimes two or more
fractures nucleate at multiple sites in the array. As the droplet
raft is further compressed, these fractures propagate leading
to misalignment: The compressed array, on completion of
the fractures, is no longer hexagonal. Instead, we see holes
or other defects in the structure. An example of competing
fractures can be seen in Fig. 11. For this particular example
in the first snapshot [Fig. 11(a)] the droplets are compressed
throughout the whole array, with some variability due to the
minimal underlying droplet polydispersity. This pressure is
alleviated by breaking depletion bonds, as seen in Fig. 11(b),
but this occurs mainly on the upper portion of the array, while
the lower half remains compressed. Eventually the lower end
starts another fracture event, but the second fracture does not
align with the first fracture, as seen in Fig. 11(c). This results
in an disorderly row reduction as seen in the last snapshot
Fig. 11(d).

A similar example is present in Fig. 12 for a 36 droplet
case. On compression, a fracture originates first at the “top”
of the array, with a secondary fracture nucleating later at the
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(a) (b) (c) (d) (e)

FIG. 11. Successive images of of a 20 droplet aggregate under-
going a second row reduction, from the original 4 rows by 5 columns
configuration. By panel (c) we can see the formation of two fractures,
which are misaligned as they propagate through out the array. Thus
the collapse in (d) is disordered, and the final packing with a defect
in (e).

“bottom.” Both fractures fail to align, causing again a disor-
derly collapse in the crystal. Another example of competing
fractures in large arrays is presented in supplemental material
Movie S4, showing the compression of a 121 particle array
[53].

While Fig. 11 is a small droplet array, we would expect
that in larger arrays there are more potential sites for fracture
events to start. Furthermore, even if a fracture starts in one
location, it propagates to other locations at a finite speed: It is
possible that the fractures cannot spread fast enough to cover
the whole crystal before another fracture event is nucleated
elsewhere. To test this suggestion, we measure the fraction of
row reductions that occur via competing fractures for different
numbers of droplets N and plot this in Fig. 13. This fraction
is defined by averaging over several simulations with the
same N but varying the random seed for the polydispersity.
In particular, for each simulation run we count the number of
row reductions that have multiple competing fractures. The
one exception is that we ignore the very last row reduction

(a) (b) (c) (d) (e)

FIG. 12. Successive images of a 36 droplet aggregate, undergo-
ing its third row reduction from the original six by six configuration.
By panel (c) we can see the formation of two fractures, which are
misaligned as they propagate through out the array. Thus the collapse
in (d) is disordered, and the final packing has a defect in (e).

FIG. 13. The fraction of row reductions observed to have com-
peting fractures as a function of 1/N1/2, using the number of droplets
N . The data correspond to initially square arrays such as the array in
Fig. 4(a). The error bars reflect the standard deviation over five runs.

(2 → 1) which is always clean; thus if we start with p rows,
then there are p − 2 total row reductions which could poten-
tially have competing fractures. Then we calculate the average
fraction of row reductions with competing fractures over all
runs with the same starting configuration. The data points
are plotted as a function of 1/N1/2 and exhibit a fairly linear
trend: Larger arrays have more competing fractures, with an
extrapolation to all fracture events being competing fractures
in the N → ∞ limit. The limit where no competing fractures
occurs corresponds to a 3 × 3 array (N = 9) for which there
is no longer a possibility for competing fractures; the array is
too small to fit two fracture events. Overall, Fig. 13 confirms
the basic idea, that larger arrays have more potential ways for
competing fractures to occur.

We investigate how the presence of competing fractures
is influenced by the initial droplet array aspect ratio, de-
fined as AR = q/p. The results are shown in Fig. 14 based

FIG. 14. The fraction of competing fractures as a function of
aspect ratio using N = 144 droplet configurations. The aspect ratio
is defined as q/p, with a low aspect ratio corresponding to “tall” con-
figurations (many rows parallel to the walls, with the walls starting
quite far apart), and high aspect ratios to “wide” configurations (few
rows between walls that start close together). The error bars reflect
the standard deviation over five runs.
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FIG. 15. The fraction of competing fracture as a function of the
angle between the two walls, for three different droplet array sizes
as indicated. The data suggest a slight angle between the walls can
dramatically decrease the frequency of competing fractures.

on calculations with N = 144 droplets. A lower aspect ra-
tio corresponds to a “taller” initial configuration with many
rows, and as expected the initial row reductions have little
amount of competing fractures. As the array becomes wider,
competing fractures become more prevalent, similar to the
wide array shown in Fig. 11. This confirms that for a wider
configuration the compression from the wall at the far ends
of the crystal can produce separate fracture events. The data
should be interpreted with caution: the “taller” configurations
with aspect ratio less than 1 will be compressed and pass
through the “wider” configurations, and thus some number of
the competing fractures observed for the taller configurations
occur when the array is at a later compression stage and is
thus wider. This likewise is a factor in the data of Fig. 13, that
the larger N arrays sample higher aspect ratio configurations
during their compression which have the higher propensity for
competing fractures.

Competing fractures were not seen in the experiments of
Refs. [10,37]. We speculate that this may be due to the exper-
imental challenge of aligning the two glass pipettes that serve
as the compressing walls. To test this hypothesis, we study
the dependence of competing fractures on the relative angle
of the moving wall to the stationary wall, with 0◦ representing
perfectly parallel alignment. The data are shown in Fig. 15
for arrays with 20 to 180 droplets as indicated. As the angle
of the wall increases, the frequency of competing fractures
decreases, reaching a minimum close to an angle of 0.2◦.
This is due to the wall compressing on one side of the array
first, which results in fractures nucleating on that side first,
and spreading throughout the crystal as the wall continues
moving. However, at still higher angles, close to the 0.2◦
angle for the arrays shown in Fig. 15, the compression is
sufficiently uneven that the number of rows between the walls
becomes less well defined, leading to an increase in competing
fractures. A tilt angle of 0.2◦ is plausible for the experiments,
and may have biased the experimental observations towards
single fractures.

V. CONCLUSION

We have simulated a variety of two-dimensional arrays of
droplets with attractive interactions as they undergo compres-
sion. Inspired by the prior experimental work of Refs. [10,37],
we reproduce and extend their key results. First, we show
how the effective elastic properties of the droplet arrays are
related to the intrinsic spring constant acting between a pair
of contacting droplets. In particular, some of these springs are
compressed and others are under tension; the tension bonds
act to increase the overall spring constant exhibited by the
droplet array. Second, we confirm how the force required to
initiate a fracture event scales with the aggregate size, extend-
ing the results to more droplets than the experiments studied.
Third, we find that intentionally adding defects into the oth-
erwise hexagonally ordered array dramatically increases the
number of fracture events, while at the same time decreasing
the force required to initiate those fractures. The dependence
of the fracture events on defects is in quantitative agreement
with the model developed in Ref. [10], and with the simula-
tions we were able to extend the size of the cluster studied
by an order of magnitude more droplets. Of interest is that
the number of excess fractures scales as

√
φ for a small

fraction φ of defects. The derivative of this diverges as φ → 0,
indicating that for a perfect crystal, adding in any density of
defects dramatically increases the ease of breaking the crystal.
The maximum disorder occurs when the sample is composed
of an equal mixture of two sizes of droplets, in reassuring
agreement with the decades of simulations which have used
mixtures of equal numbers of two particle sizes to model
glasses, for example in the classic papers of Kob and Andersen
[55,56].

Our simulations also found a phenomenon not observed
in experiments, which is the presence of competing fractures.
This occur when two independent fracture events start in dif-
ferent locations, and when they propagate through the sample,
they do not match in the middle. Competing fractures result
in the postfracture array being more disordered. These are
more prevalent for larger droplet arrays, giving some sense
of why they might not have been observed in the experi-
ments. We demonstrated that if the two walls compressing the
crystalline aggregate are slightly tilted with respect to each
other, then this helps bias the formation of cracks toward
the more compressed side. A tilt angle of ∼0.2◦ is optimal
in the simulations for suppressing competing fractures, and
this is entirely plausible to have been present in the exper-
imental work [37]. This also suggests that in real crystals
undergoing compression, slight misalignment of compressing
surfaces could affect how samples fracture. Note that in our
simulations, symmetry is broken by the slight polydisper-
sity of droplet sizes—introduced to match the experimental
polydispersity. Such polydispersity would not be present in
ideal crystals. Nonetheless, thermal fluctuations might facili-
tate multiple sites for fractures to be initiated.
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