Appendix A: Discreet Distribution Decomposition

Rohatgi and Székely derived the result that any discrete distribution with mean μ can be decomposed into a sum of bidisperse distributions, all with mean μ [9]. Their derivation is terse, so we rederive the result in this Appendix with a slightly lengthier presentation.

First, consider a discrete distribution $P(x)$ where x can take values a_{i} with probability p_{i} for $1 \leq i \leq n, \Sigma_{i} p_{i}=1$, and with mean $\Sigma_{i} p_{i} a_{i}=\mu$. Replace a_{n} and a_{n-1} by

$$
\begin{equation*}
a_{n-1}^{\prime}=\frac{p_{n-1}}{p_{n-1}+p_{n}} a_{n-1}+\frac{p_{n}}{p_{n-1}+p_{n}} a_{n} \tag{1}
\end{equation*}
$$

which occurs with probability $p_{n-1}^{\prime}=p_{n-1}+p_{n}$. This is now a new distribution with mean μ and one fewer value. This can be repeated until one ends with a final distribution that takes on three discrete values, a_{1}, a_{2}, and a_{3}^{\prime} with probabilities p_{1}, p_{2}, and p_{3}^{\prime}.

If we have a tridisperse distribution with three discrete values $\left(a_{1}, a_{2}, a_{3}\right)$, with probabilities $\left(p_{1}, p_{2}, p_{3}\right)$ and mean μ, we can decompose this into the sum of two bidisperse distributions as follows. Without loss of generality, assume $a_{1}<\mu$ and $a_{2} \leq \mu$. Then the first bidisperse distribution has values $\left(a_{1}, a_{3}\right)$ with probabilities $p_{1}^{\prime}=\frac{a_{3}-\mu}{a_{3}-a_{1}}$ and $p_{3}^{\prime}=\frac{\mu-a_{1}}{a_{3}-a_{1}}$, and similarly for the second distribution with values $\left(a_{2}, a_{3}\right)$. Sampling the first distribution with probability p_{1} / p_{1}^{\prime} and the second with probability p_{2} / p_{2}^{\prime} recovers the original tridisperse distribution.

Now consider the distribution with four discrete values $\left(a_{1}, a_{2}, a_{3}, a_{4}\right)$ and the related distribution $\left(a_{1}, a_{2}, a_{3}^{\prime}\right)$ formed using Eq (A.1). The latter can be decomposed as a sum of two bidisperse distributions, as just demonstrated. This then provides a scheme to reduce the four-valued distribution to a sum of two three-valued distributions, one of which eliminates a_{1} and the other which eliminates a_{2}. That is, the probability of finding a_{3}^{\prime} in each of the two bidisperse distributions is used to determine the new probabilities of finding a_{3} and a_{4} in the two tridisperse distributions. Proceeding by induction, each distribution with n distinct a_{i} values can be decomposed into two distributions of $n-1$ distinct values, ultimately reducing down to a sum of bidisperse distributions.

