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Abstract

Distributions of strictly positive numbers are common and can be characterized by standard

statistical measures such as mean, standard deviation, and skewness. We demonstrate

that for these distributions the skewness D3 is bounded from below by a function of the coef-

ficient of variation (CoV) δ as D3 > δ − 1/δ. The results are extended to any distribution that

is bounded with minimum value xmin and/or bounded with maximum value xmax. We build on

the results to provide bounds for kurtosis D4, and conjecture analogous bounds exists for

higher statistical moments.

1 Introduction

One often considers a probability function P(x) of a random variable X. Distributions of P(x)

are characterized by quantities such as mean, median, standard deviation, and skewness [1–3].

For a continuous random variable, X, P(x) is the probability density of finding a value x in the

range (x, x + dx). For a discrete random variable, P(x) is a discrete probability distribution

which assigns a probability pi to each potential value xi. The skewness is a measure of the asym-

metry of a distribution [1]. While there are several possible definitions of skewness [4], a com-

mon definition depends on the third moment of the distribution compared to the second

moment [5, 6]. In particular, one can define the nth central moment for continuous or N dis-

creet variables as [7]

mn ¼ hðx � mÞ
n
i ¼

Z þ1

� 1

PðxÞðx � mÞndx

¼
XN

i¼1

piðxi � mÞ
n

ð1Þ

where μ is the mean of the distribution and
ffiffiffiffiffiffim2

p
¼ s is the standard deviation. The standard-

ized moments Dn are defined as:

Dn ¼
mn

mn=2

2

: ð2Þ

We define skewness as the third standardized moment, D3. This definition for skewness has

the advantage that it is dimensionless. It also has the useful property that distributions P1(x)
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and P2(x) = cP1(cx + d) have the same skewness for c> 0 and any d [4]. Pearson [8] derived an

upper boundary on the skewness:

D2
3
� m4=m2

2
� 1: ð3Þ

Alternate derivations of this result are also in the literature [9, 10]. This applies for all

distributions.

Distributions of strictly positive numbers are often relevant: numbers of objects, sizes of

objects such as Fig 1, ages of people, prices, barometer measurements, etc. Such distributions

have only non-negative support; one can more broadly consider distributions with bounded

support, with boundaries xmin and/or xmax, generically xbound. Smołalski [11] worked out

upper and lower bounds on the skewness that applies for distributions with bounded support:

D3min;max ¼ dmin;max �
1

dmin;max
ð4Þ

with δmin = σ/(μ − xmin) to determine D3min and δmax = σ/(xmax − μ) to determine D3max.

In this paper, we present an alternative derivation for these skewness bounds. Smołalski’s

derivation relies on the argument that achieving the extrema of skewness requires a bidisperse

distribution. We mathematically prove that this is indeed the case in Section 2. Smołalski then

uses Lagrange multipliers to derive Eq (4); here, we use calculus to derive this equation and

extend it to all real bounds. Our method also applies to higher order standardized moments,

for which we find similar bounds in Section 3. We state the bounds, show when their behavior

can be used to find the maximum or minimum standardized moment, Dnextr, and conjecture

that these extrema apply to all distributions, not just bidisperse.

We are treating just the value of skewness corresponding to the parent distribution, rather

than the sample skewness based on a finite number of samples which has different limits, see

[12]. Note also that there are other definitions of skewness, for example that use the median of

the distribution as part of the calculation [1], for which other limits exist [13–15].

Fig 1. Examples of circles with random bidisperse distributions of diameters with (a) CoV δ = 0.4, skewness D3 = −1; (b) δ = 0.4, D3 = 0; (c) δ =

0.4, D3 = 1; and (d) δ = 0.4, D3 = +3. Decreasing the skewness requires the small circles becoming even smaller (compared to the mean size), as well as

decreasing their frequency of occurrence. The decreasing size reaches its natural limit when the small particles have zero size at S = −2.1 for δ = 0.4, as

predicted in Eq (4).

https://doi.org/10.1371/journal.pone.0297862.g001
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Abbreviations: a+, value of large size in a

bidisperse sample; a−, value of small size in a

bidisperse sample; Dn, nth standardized moment;

Mn, convenient function of Dn; mn, nth central

moment; p, population fraction of small size in a

bidisperse sample; Pr, Ps, two unique distributions;

Pt, combination of Pr and Ps in some

proportionality; q, population fraction of large size

in a bidisperse sample; xextr, the extreme values of

x, both the minimum and maximum.; δ, coefficient

of variation (CoV) = σ/μ; Δ+, relative difference of

large size from mean; Δ−, relative difference of

small size from mean; Δ+

0

, difference of large size

from mean; Δ-

0

, difference of small size from mean;

η, size ratio of bidisperse sizes; μ, mean; σ,

standard deviation.

https://doi.org/10.1371/journal.pone.0297862.g001
https://doi.org/10.1371/journal.pone.0297862


2 Results for skewness

We begin in the lowest order nontrivial case n = 3, replicating Smołalski’s skewness results. A

distribution function with a low value of skewness has small values which rarely occur, for

example the smallest circles seen in Fig 1a. A distribution with a high value of skewness is the

opposite situation, where the large values rarely occur, for example the largest circles seen in

Fig 1d. For a distribution P(x) with only non-negative support, the largest possible values of x
are unbounded, but the lowest possible values are bounded by zero. Thus, it makes intuitive

sense that the skewness will have a minimum possible value.

Our derivation will proceed by first considering bidisperse distributions with nonnegative

support and showing that for a fixed δ, the distribution with one value equal to zero achieves

the lowest possible skewness. We then show taking two distributions obeying Eq (4) and con-

sidering a weighted sum will result in a new distribution that also obeys Eq (4). Next, we argue

that any continuous distribution can be approximated by an appropriately weighted sum of

bidisperse distributions. In Sec. 2.4 we will conclude by generalizing from distributions with

non-negative support to distributions with arbitrary bounds, including those with μ� 0.

2.1 Skewness for bidisperse distributions

We start by considering a bidisperse distribution, P(x) which takes on values a+, a− with proba-

bilities q, p = 1 − q. Following [16], we define the ratio

Z ¼ aþ=a� ð5Þ

and focus on q as another important variable describing the distribution. The meaning of the

subscripts in a+ and a− is the former is the value larger than the mean μ and the latter is smaller

than μ, respectively. Knowing the mean μ allows us to relate these quantities as

aþ ¼ Zm=ð1 � qþ ZqÞ

a� ¼ m=ð1 � qþ ZqÞ:
ð6Þ

Note that a bidisperse distribution with a given (η, q) is equivalent to a distribution with (1/

η, 1 − q) with swapped a+ and a−. A key concept which we will use for much of this derivation

is that in addition to the mean μ, in general knowing any other two quantities related to the

distribution will uniquely determine the distribution. Those two quantities could be the values

a+ and a−; they could be η and q as per Eq (6). Usefully, they can also be the standard deviation

and skewness. Thus, we will show that a distribution with a− achieving the minimum possible

value (a− = 0) is one where the skewness D3 achieves its minimum value.

Given a bidisperse distribution defined as above, the standard deviation
ffiffiffiffiffiffim2

p
¼ s and

skewness D3 are then expressed as

ffiffiffiffiffiffim2

p
¼ s ¼ ðð1 � qÞða� � mÞ

2
þ qðaþ � mÞ

2
Þ

1=2

D3 ¼
ð1 � qÞða� � mÞ

3
þ qðaþ � mÞ

3

m3=2

2

:
ð7Þ

While P(x) could be a distribution of a quantity with dimensions (such as a probability dis-

tribution of weights), our goal is to understand the non-dimensional skewness D3. Thus, rather

than considering σ which has dimensions of x, we will use the non-dimensional quantity
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“coefficient of variation,” (CoV) defined as:

d ¼ s=m: ð8Þ

Here we use the symbol δ and later in this manuscript we will generalize this symbol beyond

the specific meaning of CoV. We can use Eq (6) to eliminate a+ and a− from m2 and Dn, result-

ing in

ffiffiffiffiffiffim2

p

m
¼ d ¼

ðZ � 1Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
q � q2

p

1 � qþ Zq
ð9Þ

D3 ¼
2q � 1
ffiffiffiffiffiffiffiffiffiffiffiffiffi
q � q2

p : ð10Þ

These require η> 1. Eqs (9, 10) can be inverted to provide expressions for q and η in terms

of δ and D3. We include the substitution M3 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4þ D2

3

p
which will be a reoccurring term:

q ¼
�D3 þM3

2M3

ð11Þ

Z ¼
2 � dð�D3 � M3Þ

2 � dð�D3 þM3Þ
: ð12Þ

These two equations give rise to two branches of solutions depending on whether the + or

− is taken in each equation. Inspection shows that the negative sign in Eqs (11 and 12) arrives

back at the classical definition of skewness, whereas the positive branch has no significance.

For the remainder of our consideration of D3, we will use the negative branch of the solutions

and drop the ± symbol. We continue and calculate the two possible values according to Eq (6):

aþ ¼ m 1þ
d

2
D3 þM3ð Þ

� �

ð13Þ

a� ¼ m 1þ
d

2
D3 � M3ð Þ

� �

: ð14Þ

Using Eq (14), we can do a straightforward calculation for the minimum possible skewness

D3(δ) for bidisperse distributions with a+, a−� 0. A distribution with a low skewness is one

that has a small amount of small numbers: and the smallest number we can get for a distribu-

tion of strictly non-negative numbers is zero. Thus, to find the limit on skewness, we solve Eq

(14) for a− = 0. This also implies a+ = μ/(1 − q). Solving for D3 when a− = 0 in Eq (14) lets us

solve for D3min:

D3min ¼ d �
1

d
: ð15Þ

For example, this gives values D3min ¼ � 2:1 for δ = 0.4, and D3min ¼ 0 for δ = 1.

2.2 A bidisperse distribution with amin > 0 increases D3

For a fixed value of δ, if the minimum value of the distribution a− is larger than zero, then D3

will increase. This is not straightforward to see from the equations above, but an alternate
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formulation will work. Define:

D
0

þ
¼ aþ � m > 0

D
0

�
¼ m � a� > 0

ð16Þ

Using Eq (6) we can factor out μ and arrive at normalized definitions of Dþ;� ¼ D
0

þ;�
=m We

then have the probability of a+ being

q ¼
D�

D� þ Dþ
: ð17Þ

We can then get δ using

d
2
¼ ð1 � qÞD2

�
þ qD2

þ
¼ D� Dþ: ð18Þ

Given that we wish to keep δ constant, we can thus use Δ+ = δ2/Δ− to eliminate Δ+, leading

to

q ¼
1

1þ D
2

�
=d

2
: ð19Þ

Now consider the third moment of the distribution m3:

m3 ¼ m3ðð1 � qÞD3

�
� qD3

þ
Þ

¼ m3d
2
ðD� � DþÞ

¼ m3d
2 d

2

D�
� D�

� �

:

ð20Þ

The partial derivative of m3 with respect to Δ− holding δ constant is

@m3

@D�

� �

d

¼ � m3
d

4

D
2

�

þ d
2

� �

< 0: ð21Þ

Increasing Δ− always decreases m3, assuming we keep δ constant and μ positive. Likewise,

decreasing Δ− (making a− larger than zero) will always increase m3. Thus, making a− larger

than zero must increase the skewness D3. This proves that for the bidisperse distribution with

a fixed δ, Eq (15) is indeed the lowest possible skewness.

2.3 Generalizations of skewness results

Suppose we have two separate distributions Pr(x) and Ps(x) both with mean μ and both satisfy-

ing the bound of Eq (15). We wish to show that any combination of these two distributions,

Pt(x) = αPr(x) + (1 − α)Ps(x) (with 0� α� 1), also satisfies Eq (15). Given that the means are

identical, it is straightforward that d
2

t ¼ ad
2

r þ ð1 � aÞd
2

s and also m3, t = αm3, r + (1 − α)m3,s.

As D3 ¼ m3=m
3=2

2 , we can rewrite the bound on skewness Eq (15) as

m3;min � m
3ðd

4
� d

2
Þ ð22Þ

Given that both Pr and Ps satisfy this constraint, we have

m3;r � m3ðd
4

r � d
2

r Þ

m3;s � m3ðd
4

s � d
2

s Þ;
ð23Þ
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and thus

m3;t ¼ am3;r þ ð1 � aÞm3;s

� m3ðaðd
4

r � d
2

r Þ þ ð1 � aÞðd
4

s � d
2

s ÞÞ

¼ m3ðad
4

r þ ð1 � aÞd
4

s � d
2

t Þ;

ð24Þ

where the last line uses the expression for d
2

t introduced above. Next, note that

d
4

t ¼ ðad
2

r þ ð1 � aÞd
2

s Þ
2

¼ a2d
4

r þ 2að1 � aÞd
2

rd
2

s þ ð1 � aÞ
2
d

4

s :
ð25Þ

On the right-hand side of Eq (24), add m3d
4

t and subtract the right-hand side of Eq (25):

m3;t � m3ðad
4

r þ ð1 � aÞd
4

s � d
2

t þ d
4

t

� a2d
4

r � 2að1 � aÞd
2

rd
2

s � ð1 � aÞ
2
d

4

s Þ
ð26Þ

Every term without δt on the right-hand side can be combined as m3að1 � aÞðd
2

r � d
2

s Þ
2

which is always non-negative, so thus

m3;t � m
3ðd

4

t � d
2

t Þ; ð27Þ

proving that the combined distribution function Pt(x) must satisfy Eq (4) if the two original

distributions satisfy that bound.

Finally, we need to generalize from the bidisperse distribution to any distribution. Follow-

ing [9], we observe that any continuous distribution with some fixed μ = μ0 can be approxi-

mated by a discrete distribution with values ai and probabilities pi and μ = μ0. Rohatgi and

Székely then proved that any such discrete distribution can be decomposed into a sum of dis-

crete distributions with two values and μ = μ0, that is, the bidisperse distributions that we have

been considering (see also S1 Appendix). In the previous paragraph, we have shown that sums

of distributions satisfy the bound. Thus, we have proven that Eq (4) holds for any distribution

P(x) of strictly non-negative values of x.

2.4 Distributions bounded by xmin or xmax

We have considered distributions P(x) for which x� 0. By rescaling the distribution, we can

enforce any value of μ we would like. However, this comes at the expense of potentially run-

ning into our bounds. For example, you cannot have some μ� 0 without a minimum less than

or equal to zero. When some values of x are below 0, we cannot simply rescale by a constant

multiple to enforce the bounds. Of course, an additive constant would fix a distribution and

make it non-negative. As noted in the introduction, this also leaves D3 unchanged: consider P
(x) and P0(x) = P(x − d). μ0 = μ + d but as the moments are defined as h(x − μ)ni, m2 and m3 are

unchanged by this shift, and thus D3 does not change.

Similarly, we also note that limm!0þðaþ; a� ; ZÞ ¼ limm!0� ðaþ; a� ; ZÞ. This limit can be calcu-

lated directly by multiplying by m

m
in Eq (12) and distributing the μ factor in Eqs (13 and 14),

leaving us with just
ffiffiffiffiffiffim2

p
where there was previously δ. Therefore, we do not have to be con-

cerned with means approaching zero.

Now consider the general case of a distribution P(x) bounded by xmax from below and with

a mean μ which might be zero. Let us assume P(x) has a nontrivial domain, which is to say, it is

not a distribution which is only nonzero at one value (which would thus be σ = 0, D3 = 0). The

transformed distribution P0ðxÞ ¼ Pðxþ xminÞ has mean m0 ¼ m � xmin. This transformed
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distribution now is nonzero only for x� 0, so is one of the distributions we considered above,

and since the distribution has a nontrivial domain, μ0 > 0 must be true. Therefore, we have:

d ¼ s=ðm � xminÞ: ð28Þ

That is, δ depends on the standard deviation σ and mean μ of the original distribution P(x),

with the additional correction of subtracting xmin, at which point we can use Eq (15) to find

D3min.

The other interesting case is a distribution bounded by xmax from above. Considering P00(x)

= P(−x) changes the mean to be μ00 = −μ and the skewness to be D00
3
¼ � D3, but does not change

the standard deviation. The distribution P00(x) is now bounded from below by � xmax so we get:

d ¼ s=ðxmax � mÞ; ð29Þ

which goes into Eq (15) to calculate D3min. In this case, we actually have found D3max ¼ � D3min.

Thus, we have rederived the results of [11], that is, Eq (4).

If a distribution P(x) has domain xmin � x � xmax then the above results give both a lower

and an upper bound on D3. As a conceptual example, suppose that xmin ¼ m � 3s and

xmax ¼ mþ 3s; then −8/3� D3� 8/3. This is consistent with the empirical observation that

the skewness tends to lie between -3 and +3.

As a useful check on these results, consider the bidisperse distribution again with probability

P(a+) and P(a−) for sizes a−< a+. Here we have xmin ¼ a� , and CoV given by Eq (9). Using Eqs

(4), (6) and (28), one can solve for D3min in terms of the variables η and q, recovering Eq (10):

that is, D3min is achieved in this situation. Similarly, using xmax ¼ aþ one finds again D3max ¼ D3.

If we extend Eq (15) to any arbitrary upper or lower bound xbound, we get the following rela-

tionship for the extreme value of D3, D3extr

D3extr ¼
d

1 � xbound=m
�

1 � xbound=m
d

ð30Þ

which has reprised Eq (4).

3 Extensions to higher order moments

3.1 Notes to generalize from skewness

Going forward, we note that Eq (30) is useful for more than the extreme D3 of the system, when

considering a bidisperse system. As noted at the start of Sec. 2, if one is given μ and two other

quantities, then one can uniquely determine a bidisperse distribution. Thus knowing one size

xbound, δ, and μ, determines the other size and relative probabilities. By plugging in any generic

size a/μ, which could be a+/μ or a−/μ to Eq (30), this produces the D3 that makes a bidisperse dis-

tribution with that size and a given CoV δ. This equation can be solved for a to give either of Eqs

(13 and 14). In other words, if we know we have a bidisperse distribution, then Eq (30) is a for-

mula for D3 as a function of one of the sizes a. We will derive similar results for higher moments.

3.2 Kurtosis D4

As noted in the introduction, previous results by Pearson [8] show that D4 � D2
3
þ 1 for any

given distribution as per Eq (3). If we now know an inequality for D3 on any distribution with

Eq (30), we can solve for a new limit in D4. in terms of xmin, μ, and δ. In particular, we have to

consider two cases. Treating the situation where the distribution has only nonnegative support

(xmin = 0, then for δ< 1, D3,min < 0. This implies that D3 = 0 is also possible, and therefore we

can achieve lower D4 than is predicted by Eq (3) based on D3,min. In other words, we can
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consider the bidisperse distribution with D3 = 0, which can be found using Eqs (11 and 12), to

achieve D4,min = 1 as per Eq (3). For δ� 1, D3,min� 0 and the limit on D4 then follows from

Eq (30). Thus we have

D4 � 1 ðd < 1Þ

D4 � d �
1

d

� �2

þ 1 ðd � 1Þ
ð31Þ

for the limits on D4 in the two cases.

For the more general case of a distribution bounded on one side (by either xmin from below,

or xmax from above, but not both), we can define the limits on kurtosis D4 in terms of the extre-

mum bounding value xextr. Define

d0 ¼ j1 � xextr=mj: ð32Þ

That is, δ0 is the equivalent of Eqs (28 and 29). We then get

D4 � 1 ðd < d0Þ ð33Þ

D4 �
d

d0

�
d0

d

� �2

þ 1 ðd � d0Þ: ð34Þ

In other words, whether the distribution is bounded from below or bounded from above, in

both cases this sets a minimum on D4—but not a maximum.

When the distribution is bounded from below by xmin and bounded from above by xmax,

the situation complicates further. We start by defining δmin and δmax analogously to Eq (32).

While xmin < xmax, the ordering of δmin and δmax is not determined. Thus define

d1 ¼ minðdmin; dmaxÞ; ð35Þ

d2 ¼ maxðdmin; dmaxÞ; ð36Þ

D4;mðdÞ ¼
d

dm
�
dm
d

� �2

þ 1; ð37Þ

where m = 1, 2. Next define δ0 using

D4;1ðd
0
Þ ¼ D4;2ðd

0
Þ ð38Þ

which can be solved to get d
0
¼

ffiffiffiffiffiffiffiffiffi
d1d2

p
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dmindmax

p
. The limits on kurtosis D4 are then

1 � D4 � D4;2ðdÞ ðd < d1Þ

D4;1ðdÞ � D4 � D4;2ðdÞ ðd1 � d < d
0
Þ

ð39Þ

and values δ> δ0 are disallowed as they would require the bidisperse distribution be composed

of values that lie outside of one or both of the boundaries (xmin, xmax). At δ = δ0, the only bidis-

perse distribution that is valid is composed of the two values xmin, xmax with appropriate prob-

abilities necessary to get the value of δ, and we have D4,1 = D4,2 = D4.

These results are visualized in Fig 2a, which illustrates a specific example with xmin ¼

0; xmax ¼ 5; and μ = 1. For this example, δ1 = 1.0 and δ0 = 3.25. The solid lines indicate Inequal-

ities 39, and the symbols indicate simulated random distributions with a specified δ. Specifi-

cally, we generated distributions with data lying between limits xmin, xmax, and with enforced
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mean μ, and calculated δ and D4 for all. For a given small range of δ, we generated 20,000 dis-

tinct random distributions, half that are bidisperse, and the other half with three or four values.

Over these 20,000 distributions, Fig 2a plots the maximum and minimum D4 found for each δ,

all of which lie between the limits corresponding we have found (shown by the lines). While

we have not proven that the bidisperse distribution sets the limits for D4 for all other distribu-

tions, this is suggestive that Inequalities 39 are indeed limits for the kurtosis for any

distribution.

3.3 Higher order generalized moments

We now proceed with an alternate derivation of Inequalities 34 which we can extend to higher

moments. The generic definition of Dn in the bidisperse case is:

Dn ¼
ð1 � qÞða� � mÞ

n
þ qðaþ � mÞ

n

mn=2

2

: ð40Þ

If we use Eq (6) to solve for the generic definition of Dn in terms of q and η, we arrive at a

formula of only q:

Dn ¼
ð1 � qÞn� 1

þ ð� 1Þ
nqn� 1

ðq � q2Þ
n
2
� 1

: ð41Þ

Plugging in n = 3 arrives back at Eq (10).

For a bidisperse distribution, we can rewrite the second line of Inequality 34 as an equality

in terms of a, one of the two bidisperse values. We then note that Eqs (30 and 34) are both

Fig 2. Simulations with bidisperse distributions, and tri- or quad-disperse distributions, yield extrema which are

plotted against the prediction (black line) given by Eq (43) for D4 (left) and D5 (right). The data correspond to

distributions with values limited to be greater than zero and less than 5μ. The bidisperse triangles are green (pointing

up) for the minima and blue (pointing down) for the maxima, and the tri or quad-disperse are pink (diamonds) for

minima and purple (squares) for maxima. The more extreme values from quad or tri-disperse was plotted for each

polydispersity bin.

https://doi.org/10.1371/journal.pone.0297862.g002
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functions of z = δ/(1 − a/μ):

D3 ¼
d

1 � a=m
�

1 � a=m
d

¼ z1 � z� 1

D4 ¼
d

4
� d

2
ð1 � a=mÞ2 þ ð1 � a=mÞ4

d
2
ð1 � a=mÞ2

¼ z2 � z0 þ z� 2:

ð42Þ

(In D4, because only even powers of z appear, the absolute value signs in Eq (32) can be

dropped, allowing z to have the same meaning for both D3 and D4.) The general pattern

appears to be a finite sum of a geometric series. In fact, S2 Appendix shows how one can start

from Eq (41) to derive

Dn ¼
Xn� 1

i¼1

ð� 1Þ
ðn� iþ1Þ d

1 � a=m

� �2i� n

¼
Xn� 1

i¼1

ð� 1Þ
ðn� iþ1Þz2i� n:

ð43Þ

One can immediately put in a value for a of interest and get a potential limit of Dn. For

example, for distributions bounded from below by xmin we conjecture

D5 � D5;min ¼ z3 � z1 þ z� 1 � z� 3 ð44Þ

with z = δ/(1 − xmin/μ) as above. As with D3, our conjectured D5,max is a similar equation using

z = δ/(xmax/μ − 1). Fig 2b shows these two limits as the solid lines for the case xmin = 0, xmax =

5, and μ = 1, along with the maximum and minimum observed D5 values from numerically

generated random distributions. All the random distributions lie within our conjectured ana-

lytic limits, again suggestive that they are the actual limits.

To try to show that these bounds achieve minima for any n, we can try a similar method as

section 2.2. If we write out a more generic mn:

mn ¼
D

2

�

D
2

�
þ d

2

d
2

D�

� �n

þ 1 �
D

2

�

D
2

�
þ d

2

� �

ð� D� Þ
n

ð45Þ

we then can take its derivative with respect to Δ−, giving

@mn

@D�
¼
ð� 1Þ

n
ðd

2
D

n� 1

�
Þððn � 2ÞD

2

�
þ nd2

Þ

ðD
2

�
þ d

2
Þ

2

�
d

2n
D

1� n
�
ððn � 2Þd

2
þ nD2

�
Þ

ðD
2

�
þ d

2
Þ

2
:

ð46Þ

Eq (46) is negative for all odd values of n, implying an increase in the smallest size above zero

will only increase Dn: thus, for odd n, Dn is minimized for a bidisperse distribution with the

smallest size set to zero. For even n, negative values of Eq (46) are achieved for Δ− between 0 and

δ, but positive for Δ−> δ. Thus, the minimum mn is achieved at Δ− = δ. In fact, this recapitulates

the result of Eq (31), that D4,min is not a universal formula but rather depends on δ. Furthermore,

if we try to replicate Eqs (22–27) with m4, the statements are untrue even when δr = δs. This

gives credence that the boundaries of Dn for even n are not always given by the choice of xbound.

Lastly, as previously noted, a bidisperse distribution can be completely described by three

parameters: most directly by the values a−, a+, and the probability q for one of these values.
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Our approach has been to instead use μ, δ, and a− to find a constraint on Dn. We note that Eq

(43) and the definition of z is sufficient to find analogues of Eqs (11–14): thus, to use Dn, μ,

and δ to describe a bidisperse distribution. One can start with those three quantities and deter-

mine a−, a+, and q: analytically for D3 as per Eqs (11–14), and numerically in other cases. This

has been useful in the past for finding distributions with desired values of the moments [16].

Moreover, by then considering which values of a− and a+ lie within bounds, one has a slightly

alternate approach to finding bounds on Dn.

4 Conclusion

We have presented an alternative derivation of Eq (4) to that presented in [11]; this equation

provides bounds on the skewness D3 for a bounded distribution with a given CoV δ. Equiva-

lently, if D3 is given, then this equation provides a bound for δ. Returning to our starting exam-

ple, if one is considering a distribution of strictly positive numbers, then for a given D3, Eq (4)

can be solved for the maximum possible δ.

Our results for D3 naturally imply limits on D4 (Inequalities 34 using Pearson’s formula [8],

and Inequalities 39 more generally). Our general methodology is to note that bidisperse distri-

butions are characterized by three parameters, which most naturally are the two values a+ and

a− as well as the probability q of the value a+; however, one can fruitfully choose as the three

parameters the mean μ, coefficient of variation δ, and a−. Setting a− to the lower bound of all

possible distributions with a given μ and δ leads to lower bounds for D3 and D4. Moreover, our

methodology extends to higher moments, leading to conjectures for limits on higher standard-

ized moments as discussed in Section 3.3. One possible extension to our work would be to see

if there are other relationships between general Dn and Dm. It would also be interesting to dis-

cover a counterexample where a distribution exists that exceeds the limits of Dn set by consid-

ering bidisperse distributions as in Section 3.3. We note that numerically at least, we have not

found such a counterexample for n = 5, as seen in the data of Fig 2.

Our results have implications for a prior computational study of the packing of spheres,

and how the density of such packings depend on the CoV and skewness of a particle size distri-

bution [16]. In that prior work, the results had a varying range of skewnesses but the authors

did not comment on the choice of this range. In fact, the lower bound on skewness studied in

that work corresponds to result of Eq (4). This bound implies that a sphere packing composed

of a distribution of radii with a given δ and lowest possible skewness is, in fact, equivalent to

the packing of a distribution of equal-sized spheres; and the observed density of such packings

in [16] obeyed this property, as it must. This is somewhat analogous to the circle packing

shown in Fig 1a, for which the skewness has not yet reached the lower limit; nonetheless the

packing is dominated by circles of the larger size.

A Derivation of Eq (43)

We wish to show that Eqs (41 and 43) are equivalent expressions for Dn for a bidisperse distri-

bution. It is easiest to start with the end result and work backwards: Eq (43) is

Dn ¼
Xn� 1

i¼1

ð� 1Þ
ðn� iþ1Þ

ðzÞð2i� nÞ ð47Þ

¼
Xn� 1

i¼1

ð� 1Þ
ðn� iþ1Þ 1 � a=m

d

� �ðn� 2iÞ

ð48Þ

where a can represent either a+ or a−. We will begin by examining the term with a, μ, and δ
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and work to express it in terms of η and q. We will initially assume a = a− and use Eq (6) to

express a− in terms of η, μ, and q; and likewise we will use Eq (9) to express δ in terms of those

same variables. This leads to

1 � a� =m
d

¼
m � a�
md

ð49Þ

¼
m � ½m=ð1 � qþ ZqÞ�

mðZ � 1Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
q � q2

p
=ð1 � qþ ZqÞ

ð50Þ

¼
1 � qþ Zq � 1

ðZ � 1Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
q � q2

p ð51Þ

¼
q

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
qð1 � qÞ

p ¼
q

1 � q

� �1=2

: ð52Þ

We can put this in to Eq (48) to give

Dn ¼
Xn� 1

i¼1

ð� 1Þ
ðn� iþ1Þ q

1 � q

� �ðn=2Þ� i

ð53Þ

¼ ð� 1Þ
nþ1 q

1 � q

� �n=2 Xn� 1

i¼1

ð� 1Þ
i 1 � q

q

� �i
" #

ð54Þ

where now the summation is simply a finite geometric sum. The sum can be evaluated as

Xn� 1

i¼1

q � 1

q

� �i

¼

q� 1

q �
q� 1

q

� �n� �

1 �
q� 1

q

ð55Þ

¼ ðq � 1Þ � q
q � 1

q

� �n

: ð56Þ

Putting this in to Eq (54), recognizing that (q − 1)n = (−1)n(1 − q)n, and distributing the

leading factor of (−1)n+1, we get

Dn ¼
q

1 � q

� �n=2

ð� 1Þ
n
ð1 � qÞ þ q1� nð1 � qÞn½ �; ð57Þ

and this can be simplified to Eq (41).

The starting point we used above was Eq (52):

1 � a� =m
d

¼
q

1 � q

� �1=2

:

If instead one focuses on a+, the equivalent result is

1 � aþ=m
d

¼ �
1 � q
q

� �1=2

: ð58Þ
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Given that Eq (47) is unchanged when replacing z! −(1/z), the derivation holds whether

using a+ or a−. Thus, the ‘a’ in Eq (48) is valid for either meaning of a, and we have shown that

Eqs (41 and 43) are equivalent.
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