Introduction to soft materials

Eric R. Weeks Physics Dept., Emory University Atlanta, USA

With additional assistance from Xin Du 杜鑫 Xia Hong 洪霞

toothpaste (colloid) and shaving cream (foam)

above: emulsion

above: colloid

Today's class:

- Introduction to specific soft materials (colloids, foams, emulsions...)
- Relevant physics for thinking about these materials

Examples of soft materials

- food
- toothpaste
- shampoo
- sand piles
- foam

Key theme: often mixtures of various components

Photo: Piotr Habdas

- Lots of cool physics! (some to be discussed in this talk)
- Also some practical reasons...

• Food! (pictures from a cafeteria in Shanghai)

rice noodles (粉丝)

sponge gourd + gluten (丝瓜面筋)

- Make low-fat products with same texture as "normal"
- Improve "shelf-life": food texture changes with time

• Biology: Understand mechanical properties of cells, tissues

people are soft materials

photo credit: Xin Du

• Biology: Understand mechanical properties of cells, tissues

people are soft materials

• Physics: plenty of interesting physics to do!

photo credit: Xin Du

soft condensed matter

Study of soft systems, often composed of at least two components. Examples: foams, emulsions, colloids, polymers, gels, pastes, food, ... Sometimes called "complex fluids".

Key question: how to relate microscopic structure to macroscopic properties.

Example A: Colloids

Examples: milk, ink, paint, toothpaste, blood

- 1 nm 10 µm solid particles in a liquid
- $k_{\rm B}T$ important
- study with visible light ~ 0.5 μm (microscopy, light scattering)
- reasonable time scales

1-2 μm dia. colloids (E. Weeks & H. Patel)

Red blood cells (5 µm dia.) (http://www.uq.edu.au/nanoworld/)

Physics of colloids: Brownian motion

Leads to normal diffusion:

$a = 1 \ \mu m \text{ particles}$

$\langle \Delta r^2 \rangle = 6D\Delta t$

Digression: Stokes-Einstein-Sutherland equation

<u>Derived in 1905:</u>W. Sutherland, *Phil. Mag.*, **9**. 781.A. Einstein, *Ann. der Physik*, **17**, 549.

Willian Sutherland in his twentieth year.

www.aapps.org/archive/bulletin/vol15/15_1/15_1_p35p36.pdf antwrp.gsfc.nasa.gov/ apod/ap000108.html

 $=\frac{k_{B}T}{6\pi\eta a}$ D

Digression: Stokes-Einstein-Sutherland equation

On the motion of small particles suspended in liquids at rest required by the molecular-kinetic theory of heat Einstein, *Annalen der Physik*, 17(1905), pp. 549-560.

Implication: Avogadro's number

A dynamical theory of diffusion for non-electrolytes and the molecular mass of albumin Sutherland, *Philosophical Magazine*, S.6, 9 (1905), 781-785.

Implication: size of albumin

See: www.aapps.org/archive/ bulletin/vol15/15_1/15_1_p35p36.pdf

Physics of colloids: Sedimentation

Problem #1: sedimentation & diffusion

Drag force:
$$F_{drag} = 6\pi\eta av$$

Gravitational force:
$$F_{grav} = m_{buoy}g = \left(\frac{4}{3}\pi a^3\right)(\Delta\rho)g$$

Diffusion:
$$\langle \Delta r^2 \rangle = 6D\Delta t$$
 $D = \frac{k_B T}{6\pi\eta a}$

- 1. From balance of forces, find formula for v_{sed}
- 2. From $m_{buoy}gh = k_BT$, find formula for scale height *h*
- 3. Find formula for time to diffuse distance a^2

Answers #1: sedimentation & diffusion

1. From balance of forces, find formula for v_{sed}

$$v_{sed} = \frac{2}{9} \frac{\Delta \rho a^2 g}{\eta} \sim a^2$$

2. From $m_{buoy}gh = k_BT$, find formula for scale height *h*

$$h = \frac{3}{4\pi} \frac{k_B T}{\Delta \rho a^3 g} \sim a^{-3}$$

3. Find formula for time to diffuse distance a^2

Meaning of Answers #1: sedimentation & diffusion

sedimentation velocity:

$$v_{sed} \sim \Delta \rho a^2 g$$

scale height:

$$h \sim \frac{1}{\Delta \rho a^3}$$

diffusion time:

$$\tau_D \sim a^3$$

small particles sediment slowly; use centrifuge to $\uparrow g$

strong size dependence of gravity, large particles "bad"

small particles move fast

polystyrene particles in water: $\Delta \rho \sim 0.05 \text{ g/cm}^3$, $a \sim 1 \mu \text{m}$, $\eta \sim 10^{-3} \text{ Pa} \cdot \text{s}$, kT=4·10⁻²¹ J poly-methyl-methacrylate particles in density-matched solvent: $\Delta \rho \sim 0.0005 \text{ g/cm}^3$, $a \sim 1 \mu \text{m}$, $\eta \sim 2.10^{-3} \text{ Pa} \cdot \text{s}$

sedimentation velocity:

$v_{sed} = \frac{2}{9} \frac{\Delta \rho a^2 g}{\eta}$	≈ 0.1 µm/s	≈1 nm/s
scale height:		
$h = \frac{3}{4\pi} \frac{k_B T}{\Delta \rho a^3 g}$	≈ 2 μ m	≈ 200 µm
diffusion time:		
$\tau_D = \frac{\pi \eta a^3}{k_B T}$	≈ 0.8 s	≈1.6 s

polystyrene particles in water: $\Delta \rho \sim 0.05 \text{ g/cm}^3$, $a \sim 1 \mu \text{m}$, $\eta \sim 10^{-3} \text{ Pa} \cdot \text{s}$, kT=4·10⁻²¹ J large polystyrene particles in water $\Delta \rho \sim 0.05 \text{ g/cm}^3$, $a \sim 100 \mu \text{m}$, $\eta \sim 10^{-3} \text{ Pa} \cdot \text{s}$

sedimentation velocity:

$$v_{sed} = \frac{2}{9} \frac{\Delta \rho a^2 g}{\eta} \approx 0.1 \,\mu \text{m/s} \approx 1 \,\text{mm/s}$$

scale height:
$$h = \frac{3}{4\pi} \frac{k_B T}{\Delta \rho a^3 g} \approx 2 \,\mu \text{m} \approx 2 \,\text{pm}$$

diffusion time:

$$\tau_D = \frac{\pi \eta a^3}{k_B T} \approx 0.8 \text{ s} \approx 9 \text{ days}$$

Important points about colloids:

- Small size important
- Understanding scaling with *a* straightforward, useful
- Granular particles ($a > 10 \mu m$) aren't thermal

Example B: Granular materials

<u>Definition</u>: large, solid particles in air or vacuum

Solid-like: pile of sand Liquid-like: pouring sand from bucket Gas-like: throw sand into the air

Key differences from colloids:

- Friction important
- $k_B T$ not important
- Gravity important (unless 2D horizontal system, or microgravity, or simulation)

Example C: Emulsions

<u>Definition</u>: Liquid droplets in another liquid (oil & water) Add surfactant (= soap) to prevent coalescence of droplets

Examples: mayonnaise (surfactant = egg), butter

Example C: Emulsions

Liquid droplets in another liquid (oil & water) Add surfactant to prevent coalescence of droplets

<u>Key differences from colloids</u>: droplets can deform; surfactants control surface tension which controls deformability

What is surface tension?

Surface tension γ = energy cost per unit area

To make emulsion with droplets of radius *a*: total volume = *V*, number of droplets $N \sim Va^{-3}$, total area $A \sim Va^{-1}$ \rightarrow thus requires energy E $\sim V\gamma/a$ to make emulsion

Question #2: Why can bugs walk on water and I can't?

Surface tension γ = energy cost per unit area

Approximate bug as sphere of radius *a*.

Immersing bug releases gravitational potential energy Δ GPE. This is good. Bugs should fall down.

Putting bug in water costs surface energy Δ SE. This is bad, surface energy wants to keep bug dry.

 $\Delta GPE > \Delta SE$: bug gets wet!

Answer #2: Why can bugs walk on water and I can't?

How to use $\triangle GPE$ and $\triangle SE$ to answer top question?

$$\Delta GPE \sim a^4 \qquad \Delta SE \sim a^2$$

thus, $\Delta GPE / \Delta SE \sim a^2$ if *a* small enough, SE penalty more significant than GPE reward

 $\Delta GPE = \Delta SE$ for $a \sim 4$ mm: largest spherical bug that can walk on water

Laplace Pressure of Droplets

Consider balloon: balloon compresses until internal pressure sufficiently high

$$\Delta P = \frac{\gamma}{a}$$

Thus, smaller emulsion droplets are at higher pressure.

image from Wikipedia

Implications for emulsion droplets:

- Droplets like to be round (minimize surface energy)
- Very large droplets sag under their own weight
- Smaller droplets are stiffer
- Surfactants modify γ , but energy scales as a^2 , thus size is more influential

picture: C Hollinger & E Weeks

Example D: Foams

<u>Definition</u>: Like emulsions, but gas bubbles rather than droplets. Still need surfactant.

Troubles:

• Foams "coarsen" as gas diffusions from small bubbles to large (due to Laplace pressure)

• Foams drain (liquid is heavy)

Picture: G Cianci & E Weeks

Conclusion: Life is full of interesting materials

large granular media

