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A minimal introduction to fluid dynamics, intended as useful background for soft matter scientists.

I. INTRODUCTION

Fluid flow includes problems such as the flow of our
atmosphere, ocean currents, flow around airplanes and
submarines, flow through pipes, and details of swimming
bacteria. Phenomena studied include turbulence, chaotic
mixing, and shock waves. Soft matter research tends to
be concerned with slow flows and small scales, which al-
lows for useful simplifications. This chapter mainly treats
fluid dynamics in the slow and small limits, emphasizing
concepts needed for a variety of soft condensed matter
problems.

II. BASICS

A. Viscosity

“Fluid” is a general term that includes both liquids and
gases. Fluids deform and flow under any applied force no
matter how small. A flowing fluid does have dissipation
as one parcel of fluid slides past another, and this is due
to viscosity. At the atomic scale, this is the interaction of
molecules of fluid as they move past one another, collide,
and exchange momentum. At the macroscopic scale, this
means that it requires force to cause a flow, as illustrated
in Fig. 1. For a fluid confined between two plates of area
A separated by distance d, the force required to move
one plate at velocity v relative to the other plate is given
by:

F

A
= η

v

d
(1)

with the viscosity η showing up as the proportionality
constant. The equation is written such that the left side
is stress (force per area) and the right side has the strain
rate (v/d). η is a material parameter which has non-
intuitive units of Pa·s=kg/m·s. For reference, water has
η = 1.00 mPa·s and air has η = 1.8× 10−5 mPa·s, both
at 20◦ C. Pure glycerol has a viscosity 1500 times that
of water, and honey is roughly 104 times more viscous
than water. A longer discussion of viscosity is given in
Sec. IV.
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FIG. 1. A fluid feeling stress F/A leading to strain rate v/d. F
is an imposed force on the top plate which has area A, which
moves at velocity v relative to the bottom plate a distance
d below. The constant of proportionality between stress and
strain is the viscosity η, with F/A = η(v/d). η is a material
property of the fluid, similar to the density ρ.

B. Coordinates

There are two complementary approaches to describing
fluid motion, known as the Eulerian description and the
Lagrangian description. The Eulerian description con-
siders fixed positions in space and asks, at any moment
in time, what the velocity of the fluid is at that position,
~u(~r, t) [1]. If the velocity is nonzero, then it is clear that
the molecules composing the fluid at that position are
changing with time. The Lagrangian approach takes the
complementary viewpoint, of following a parcel of fluid
as it moves in the flow. This is a bit problematic for a
parcel of fluid which gets stretched and folded over time.
On the other hand, if one observes the motion of a flowing
fluid by following the trajectories of solid tracer particles
in that fluid, then those tracer particles are most easiest
thought of in a Lagrangian sense.
The Eulerian approach is more common, and in prac-

tice one does not usually worry about the molecular na-
ture of the fluid but rather treats the fluid as a contin-
uum. (This is a reasonable approximation as long as
you are concerned with length scales one or two orders of
magnitude larger than the inter-molecular spacing, which
is almost always the case.)

C. The Navier-Stokes equation and continuity

equation

The starting point for fluid mechanics is Newton’s sec-

ond law, ~F = m~a. Let’s modify it to be more useful
for fluids. The density of a fluid is not required to be
constant, so it’s better to consider the momentum form
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of this equation: ~F = d~p/dt. Rather than considering
point masses, it’s easier to think about momentum den-
sity and body forces per unit volume or per unit mass.
(Body forces are forces such as gravity that typically orig-
inate outside the fluid.) Additionally the adjacent fluid
exerts stresses that can change the momentum density.
The resulting equation is known as the Cauchy Equation,
a general equation for momentum conservation, which we
will skip over for the sake of brevity.
The Navier-Stokes equation is a specific version of the

Cauchy equation. In particular, the Navier-Stokes equa-
tion recognizes that the pressure and viscosity play im-
portant roles for fluids. For a formal derivation the reader
can consult a textbook (for example Ref. [2]). Here, we
will state the equation and then explain the meaning of
the various terms. The momentum density of a fluid
evolves as:

ρ

[

∂~u

∂t
+ (~u · ~∇)~u

]

= −ρ∇P + η∇2~u+ ~g. (2)

The left side of this equation is d~p/dt, the change of
momentum density at a given position. The first term,
∂~u/∂t, represents that the velocity can be changing at
that location thus changing the momentum. The sec-
ond term is trickier. The momentum of a fluid parcel
can change by moving to a location where the velocity
is different. ~u is the velocity and thus indicates where
the fluid parcel is moving; ~u · ∇ then asks for the spatial

derivative in that direction; and finally (~u · ~∇)~u yields the
spatial change of the velocity in that direction. This term
is referred to as the inertial term, and could be thought
of as the inertia of a fluid parcel (ρ~u) carrying that fluid
parcel to a new region where the momentum is different.
More generally, one defines the convective derivative:

Df

Dt
=

∂f

∂t
+ (~u · ∇)f (3)

with the idea being the same. Quantity f can change by
changing at that location, or by being carried by the fluid
to a new location where f is different. When applied to
momentum, the left side of the Navier-Stokes equation
(Eqn. 2) can be written as

ρ
D~u

Dt
= ρ

[

∂~u

∂t
+ (~u · ~∇)~u

]

. (4)

The right-hand side of Eqn. 2 has three terms, which
are the pressure term, viscous dissipation term, and body
force term. The pressure term is straightforward: if pres-
sure is uniform in space, it has no effect on fluid flow. If
the pressure is large at point A and small at B, then it
pushes the fluid from A to B (which is why the nega-

tive sign is in front of ~∇P , so that the fluid accelerates
down the pressure gradient). The viscous term depends
on two spatial derivatives of the velocity field. The argu-
ment presented in Sec. II A is that a spatial variation in
the velocity should result in a force, so one might expect

the viscous term to look like ~∇ · ~u. However, if there

is a uniform gradient in the velocity field, then the vis-
cous forces acting on either side of a parcel of fluid are
equal and opposite in direction, and thus do not change
the momentum of that fluid parcel. The gradient cannot
be uniform, and working through the relevant math one
finds that the correct second order spatial derivative is
∇2~u [2]. The third term on the right hand side of Eqn. 2,
~g, represents any body forces. These forces can be gravi-
tational, or perhaps electrical or magnetic if the fluid has
some special composition and the environment has the
appropriate fields.
Equation 2 is for momentum conservation. We also

need mass conservation, which is given by

∂ρ

∂t
+ ~∇ · (ρ~u) = 0. (5)

If the density is decreasing at some point (first term neg-
ative), then this is because the mass is diverging from
that point (second term positive). In other words, the
second term is the mass flux away from a given position.
Equation 5 is known as the continuity equation.
Many fluids are incompressible, or can be treated as

such. For example, water has a bulk modulus of about
K = 2.2 GPa which is only about a factor of 20 smaller
than glass. A 1% change in volume requires a pressure
of 0.01K ≈ 220 atm, a pressure unlikely to be encoun-
tered in soft matter science. Accordingly, we can take the
density ρ to be a constant, and simplify the continuity
equation to be

~∇ · ~u = 0. (6)

Note that for gases the incompressibility assumption is
usually false. A bubble rising up through water will
change its volume by 1% for every 10 cm of rise, due
to the depth-dependence of the hydrostatic pressure of
the water.

D. Reynolds number

The most famous nondimensional number in fluid me-
chanics is the Reynolds number, and for soft condensed
matter science it is famously small. We can derive this
number by asking about the relative importance of two
specific terms in the Navier-Stokes equation, the inertial

term (ρ(~u · ~∇)~u) and the viscous term (η∇2~u). Of course,
~u is in general space and time dependent, so the magni-
tude of these two terms will vary quite a bit. However,
we can do a useful estimate. Define U as the characteris-
tic velocity scale, and L as the characteristic length scale

over which U changes. In other words, ~∇~u ∼ U/L will
give us the correct order of magnitude. Then define the
Reynolds number as

Re =
inertial term

viscous term
=

ρ(~u · ~∇)~u

η∇2~u
≈

ρU2/L

ηU/L2
=

ρUL

η
. (7)
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Re is nondimensional, given that it was constructed by
taking the ratio of two terms which have the same dimen-
sionality. It is easy to see that Re will be large for fast
flows (airplanes) or large flows (oceans, atmospheres) or
both (Jupiter’s Great Red Spot). As a simple example,
consider sitting in a car moving at 100 km/hr and stick-
ing your hand out the window. U = 100 km/hr= 28 m/s,
L ≈ 0.1 m for your hand, ρair ≈ 1.2 kg/m3, and
ηair = 1.8× 10−5 mPa·s, giving Re≈ 2× 105. The mean-
ing of this is that the velocity field describing the air flow
around your hand is not greatly influenced by viscosity.
The force you feel from the air on your hand is not a
viscous force, but rather the force required to accelerate
the air up to the velocity of your hand. Mathematically,
if you wished to solve the Navier-Stokes equation to de-
scribe the air flow around your hand, you would neglect
the viscous term in that equation. This is somewhat of
a simplification, in that very close to your skin viscosity
does play a role in the “viscous boundary layer;” this is
described in detail in Ref. [2].
The complementary case holds for small materials and

situations. The reader should immediately put down
this chapter and go read the classic article “Life at Low
Reynolds Number” by E. M. Purcell [3] for a beautiful
explanation of low Reynolds number physics. To give one
example distinct from Purcell’s article, consider a 10 µm
diameter polystyrene particle sedimenting in water. The
sedimentation velocity is U ≈ 10 µm/s (see Sec. III C),
and so Re= 10−4. Now, the conceptual meaning is that

inertia no longer plays a role, and the (~u · ~∇)~u term can
be neglected in Eqn. 2. As this is the only term that is
nonlinear in ~u, this is a quite useful simplification.
The Reynolds number can be derived in a different

fashion by non-dimensionalizing the Navier-Stokes equa-
tion; see Ref. [2] for this derivation.

E. Choosing U and L

Sometimes the choice of U and L is not obvious. For
U one typically chooses the largest velocity present, most
often the velocity of a boundary to the flow. For L, the

idea is that we are assuming ~∇ ∼ 1/L so one should look
for the length scale over which the velocity changes. For
example, Fig. 2 shows a Taylor-Couette flow cell, one of
the canonical geometries for fluid studies, in particular of
studies of turbulence. Here, the velocity scale would be
ωR1 and the length scale over which the velocity varies
is R2 − R1. Thus, Re = ρωR1(R2 − R1)/η. Despite the
prominence of the symbol L in the diagram, it would not
be the right length scale for determining Re.

F. Stokes Equation

The Stokes Equation is the simplification of the Navier-
Stokes Equation (Eqn. 2) for Re ≪ 1, in other words,

FIG. 2. Sketch of a Taylor-Couette apparatus.

dropping out the inertial term. An additional simplifica-
tion is to make the equation time-independent. Purcell
has a nice argument explaining this [3]: at low Reynolds
number, viscosity is very significant, so that if a force
driving a flow is suddenly removed, the flow will stop
nearly instantaneously. In other words, the fluid flow is
determined at any moment by the boundary conditions,
external forces, and pressure – but not by any history.
Thus, the Stokes equation is

−ρ∇P + η∇2~u+ ~g = 0. (8)

G. Boundary conditions

At the boundary between a solid and a fluid, the fluid
obeys a “no-slip” boundary condition. This means that
the fluid velocity must match the velocity of the solid.
For example, for a fluid flowing through a pipe, the fluid
velocity must be zero at the pipe walls. Note that the
matching of velocities is true in a vectorial sense: the
velocity must be the same for both normal and tangential
velocities.
At the boundary between two fluids (say, oil and wa-

ter), the fluids obey a “stress-free” boundary condition.
At these boundaries, the velocity of the fluids are equal at
the interface (again, true for both normal and tangential
components of the velocity). It is certainly possible for
these components to be nonzero. If the normal compo-
nent is nonzero, then the interface is moving. Examples
include the air-water interface of ocean waves, or the oil-
water interface for an oil droplet moving upward in water.
In addition, the stress (related to derivatives of the veloc-
ity) relates to the interface motion, surface tension, and
viscosities of the two fluids. I’d explain more, but I’m
writing this on January 8, 2017 and plan to hand these
notes out on January 9, so I’ll note that the stress-free
boundary condition is described in more detail online in
various places, and also in any fluids textbook.
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III. SPHERES

A. Drag force on moving sphere

Physicists are known for approximating complex ob-
jects as spheres. Indeed, for many situations the sphere
is the simplest object to consider, and that is true for
fluid mechanics. That being said, spheres are of partic-
ular interest for soft matter as many constituents of soft
materials are spherical. Colloidal particles are easiest to
make as spheres, although more complex shapes are pos-
sible [4]. Emulsion droplets prefer to be spherical due
to surface tension. Likewise, bubbles in a foam prefer a
spherical shape due to their surface tension.
Furthermore, as it happens, the drag force on particles

at low Reynolds number doesn’t vary that much with
shape. By dimensional analysis, the drag force on a mov-
ing object should be F ∼ ηLv based on the viscosity η, a
characteristic length L, and the velocity v. For spheres,
the exact result is due to Stokes and is

Fspheres = 6πηav (9)

using the sphere radius a for the characteristic length
scale. For a long ellipsoidal needle moving parallel to its
long axis, the drag force increases to

Fneedle,parallel =
2πηLv

ln(L/a)
(10)

in terms of the needle length L and radius a. If L/a = 100
then this is 7.2 times larger than the drag on a sphere.
For the same needle moving perpendicular to its long
axis, the results are

Fneedle,perpendicular = 2Fneedle,parallel. (11)

Approximating this needle as a sphere of the same volume
would suggest a drag force 4.6 times larger, so too small
by a factor of ∼ 3, but at least correct to within an order
of magnitude. The drag force for a variety of shapes is
compiled in Ref. [5].
For droplets of one fluid moving through another fluid,

stresses at the surface of the droplet will induce flow in-
side the droplet, which reduces the drag force acting on
the droplet. Again restricted to low Re, the drag force
on a droplet is

Fdroplet =
[1 + (2ηbulk/3ηdrop)

1 + (ηbulk/ηdrop)

]

Fsphere, (12)

where ηbulk is the background fluid viscosity (which is
what is used for Fsphere in this equation) and ηdrop is the
viscosity of the droplet fluid. The term in square brackets
approaches 2/3 for ηdrop ≪ ηbulk and approaches 1 for
ηdrop ≫ ηbulk. The latter limit can be understood as
the limit in which the droplet viscosity is so high that
it acts like a solid particle, and thus must simplify to
Eqn. 9. The former limit is correct to within 1% for

small air bubbles rising in water at room temperature.
(All of these drag force results are correct to within 1%
for Re <

∼ 10−2, so this requires that small air bubble to
be about 15 µm radius or smaller.)

B. Flow field around moving sphere

Related to the drag force is the flow field around a
sphere moving with a specified velocity (still at low Re).
This can be found by solving the Stokes Equation in the
reference frame where the sphere is at rest and the back-
ground fluid has velocity v, and using the boundary con-
dition that the velocity is zero at the sphere surface; see
Ref. [2] for a derivation. The derivation and solution are
best done in spherical coordinates, with the result being:

Ur = U∞ cos θ
[

1−
3a

2r
+

a3

2r3
]

(13)

Uθ = −U∞ sin θ
[

1−
3a

4r
+

a3

4r3
]

. (14)

In the limit r → ∞, the flow field reduces to U∞ in the
direction θ = 0. In these equations r is the distance from
the center of the sphere. The drag force can be calculated
from the viscous stresses exerted by the flow field on the
surface of the sphere [2].
Changing back into the reference frame where the

sphere has velocity U∞ and the surrounding fluid is mo-
tionless far from the sphere, the key result is that the
flow field decreases toward zero as 1/r. This means that
a moving sphere exerts a hydrodynamic force on a nearby
sphere with the magnitude of this force inversely propor-
tional to their separation. For spheres undergoing Brow-
nian motion, this results in measurable correlations in
the motion of pairs of particles [6]. This correlation de-
cays as 1/r. Furthermore, the direction dependence of
Eqns. 14 means that the correlations are twice as strong
for displacements of spheres along the direction of their
separation as compared to displacements of those spheres
perpendicular to the direction of their separation. In-
triguingly, the strain field around a displaced particle in
a perfectly elastic material also decays as 1/r [7]. This
coincidence leads one to note that the correlations be-
tween particle displacements will decay as 1/r for any
homogeneous viscoelastic medium [6, 8] which has been
experimentally observed [6].
A final point to note is that these results for the drag

force and flow fields are for objects moving in an infinitely
large fluid system. However, often in soft matter one en-
counters boundaries – for example, solid walls in a mi-
crofluidic device, or a second immiscible liquid. Parti-
cles moving near a solid flat wall experience an increased
drag force, due to the need to shear the fluid between
the particle and the wall; this is known as Faxén’s law
[9, 10]. This is true for particles moving either parallel
or perpendicular to the wall. If particles move near a
flat boundary between two liquids, then the drag force
depends both on the viscosity of the liquid they are in,



5

FIG. 3. Sketch of sedimenting particles in a container. The
wavy solid arrows indicate that particle trajectories can be
erratic [14]; each particle sets up a flow field around it roughly
like Eqns. 14 and the interacting flow fields cause the erratic
motions. The 1/r flow field around each particle also results
in nontrivial interactions with the container boundaries, along
the lines of Faxen’s law. Additionally, there is a fluid backflow
(indicated by the dashed lines) as the particles approach the
bottom of the container.

and also the viscosity of the second nearby liquid. In this
case if that second liquid has a lower viscosity, the drag
force on the moving particle can be reduced [11–13]. If
the second liquid has a significantly larger viscosity, then
the results approach the limit for a hard wall, that is, the
results approach Faxén’s law.

C. Sedimentation

A common situation is sedimentation: for example,
dense particles sinking through a less dense fluid. For a
single particle, the situation is easy. The gravitational
force is given by the buoyant weight:

Fgrav = ∆ρ(
4

3
πa3)g (15)

where ∆ρ is the density difference between the particle
and the fluid, the term in parentheses is the particle vol-
ume, and g is the acceleration due to gravity. The gravi-
tational force is balanced by the drag force (Eqn. 9) lead-
ing to the sedimentation velocity

vsed =
2

9

∆ρga2

η
. (16)

This was used above in Sec. III, along with Eqn. 7, to
estimate the size of an air bubble that has Re∼ 10−2.
However, this simple result for one particle is not cor-

rect for a sedimenting collection of particles due to their

hydrodynamic interactions; see Fig. 3. Furthermore,
in any real experiment with container boundaries, sed-
imenting particles are slowed by the backflow of fluid
that has to move past them. In practice the sedimen-
tation velocity of a suspension of spheres is complicated
and depends on the container size, container side walls,
particle concentration, and Reynolds number [14–18].

IV. VISCOSITY

A fluid’s viscosity is clearly an important parameter,
showing up for example in the Reynolds number (Eqn. 7)
and the drag force (Eqn. 9). Accordingly, this section
provides additional information about fluid viscosity.

The first important point is that a fluid’s viscosity is
a strong function of temperature. For room tempera-
ture water, η changes by about 2% per degree Celsius.
Thus, if you really care what viscosity a fluid has in an
experiment, you must also take care to measure the tem-
perature (and preferably control it). For example, you
can measure the size of small colloidal particles by mea-
suring their diffusivity, but this depends on knowing the
viscosity – so a 1◦ uncertainty in temperature is at least
a 2% uncertainty in particle size [19].

Colloids are materials made of small solid particles in
a liquid [20]. Common examples are blood, paint, and
toothpaste. Often one wishes to know the viscosity of a
colloidal sample, and it is well known to depend on the
fraction of volume occupied by the solid particles – that
is, the volume fraction φ. For φ ≪ 1, the viscosity is
known to be

η(φ)/ηfluid = 1 +
5

2
φ+ 6.2φ2, (17)

with the first order correction due to Einstein [21] and
the second order correction due to Batchelor [22]. For
volume fractions φ >

∼ 0.1 there are several different fit-
ting functions in use [23, 24]. In particular, colloids with
φ ≈ 0.6 are extremely viscous, about 3 - 4 orders of mag-
nitude more viscous than ηfluid [24]. At this point, it
is quite challenging to measure the viscosity accurately
[23]. In fact the effective viscosity can depend strongly
on the flow rate: initially as the flow rate increases, the
apparent viscosity decreases (termed “shear-thinning”)
and then at higher flow rates the apparent viscosity in-
creases (termed “shear-thickening”) [25]. Measuring the
flow properties of dense colloidal fluids is an active re-
search field and the interested reader should consult other
sources [20, 24, 25]; the main point for this chapter is that
the viscosity of colloids is simple at low volume fractions
(Eqn. 17) and complicated at higher volume fractions.
In all cases, the viscosity of a colloid is scaled by the
viscosity of the background fluid ηfluid.
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