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Numerous studies have demonstrated the potential for particles in fluids to exhibit complicated
dynamical behavior. In this work, we study a horizontal rotating drum filled with pure glycerol and
three large, heavy spheres. The rotation of the drum causes the spheres to cascade and tumble and
thus interact with each other. We find several different behaviors of the spheres depending on the
drum rotation rate. Simpler states include the spheres remaining well separated, or states where two
or all three of the spheres come together and cascade together. We also see two more complex states,
where two or three of the spheres move erratically. The main signature of this erratic motion is that
pairs of spheres intermittently approach each other �sometimes colliding� and then separate; the time
between collisions is variable even for a fixed rotation rate. We characterize these disordered states
and find a complex phase space with a rich set of behaviors. This experiment serves as a simple
model system to demonstrate complex behavior in simple fluid dynamical systems. © 2010
American Institute of Physics. �doi:10.1063/1.3353612�

I. INTRODUCTION AND PRIOR WORK

Slurries �particle suspensions in a liquid� and granular
materials are widely found in industrial settings, and a com-
mon question is how to best mix these materials.1,2 A com-
mon mixer is the rotating drum, which has been frequently
used as a model system for understanding how particles
mix3–13 or particle-laden suspensions.14,15 A common obser-
vation is that in horizontally rotated drums, mixtures of two
sizes of particles will often segregate into bands, both with
and without a liquid present. These experiments mostly fo-
cused on cases with large numbers of particles interacting.
However, even simpler experiments �in different geometries�
with only a few particles in a liquid also find complex
behavior.16–19 For example, a dilute suspension of particles
falling through a liquid can result in nontrivial swirling mo-
tions of the particles due to their hydrodynamic
interactions.20–27 Pushing to even further dilution, simula-
tions found that even three spheres falling through a liquid
have nontrivial interactions, and exhibit sensitive depen-
dence on their initial positions.28 In these simulations, the
complex behavior was transient, with two spheres ultimately
pairing off and moving away from the third sphere; the sen-
sitivity was in determining which sphere was left behind.
Similar results were seen in an early experiment.29

Combining the ideas of sedimentation and a rotating
drum allows study of persistent nontrivial behavior of inter-
acting spheres. In this geometry, particles tumble through the
liquid, with the finite size of the drum potentially keeping the
particles close enough to always interact. This was studied
experimentally by Mullin et al. in Ref. 30, and is also the
system we study in this paper. They studied a hollow cylin-

der, filled with glycerine, oriented horizontally, and rotated at
various angular speeds �. Three large non-Brownian spheres
are placed in this drum. This system serves as a version of a
simple sedimentation experiment, with the constraint that the
rotation of the drum forces the three beads to remain close
together, continually interacting. Figure 1 shows a sketch of
this experiment. When the drum rotates, these beads can un-
dergo a periodic cascade in the vertical direction. As they
cascade, the beads experience long-range interactions due to
the fluid. Mullin et al. found several different behaviors de-
pending on �. Simple behaviors included states where the
three particles remain well-separated and cascade indepen-
dently of each other. More complex behaviors were ob-
served, such as a state described by Mullin et al. as appar-
ently chaotic, where the particles move back and forth
horizontally along the tube as they continue to tumble verti-
cally. These horizontal motions were slow, erratic, and un-
predictable. In some cases, two particles even momentarily
collide before withdrawing. No complex behaviors were
seen with only one or two spheres present.

Motivated by Ref. 30, we study a similar experimental
system of a rotating drum with three spheres. The benefit of
this experiment is that it can be stably run for very long
periods of time, thus allowing us to study the motions of the
spheres over a long period of time and describe the disor-
dered states in great detail, which was not done previously.
�Note that the states we term “disordered” correspond to the
states termed “chaotic” in Ref. 30.� We find the states seen
previously, as well as three new states. A key result of our
work is that our characterization of the disordered states
shows that different disordered states at different rotation
rates � often have widely different behaviors, despite a su-
perficial similarity. We thus demonstrate and characterize a
simple system which possesses a wide range of nontrivial
behaviors.
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II. EXPERIMENTAL METHODS

A. The drum

The experimental apparatus is a lc=25 cm long hor-
izontally oriented sealed drum, with an inner radius
rc=5.72 cm. These dimensions are similar to those used in
Ref. 30 �lc=25 cm and rc=5.9 cm�. The main body of the
drum is constructed from a section of acrylic glass pipe with
a wall thickness of 1 cm. To each end of this drum, water-
proof threaded aluminum caps are fitted. Each cap has a shaft
attached via an adjustable mounting, so that the shaft can be
carefully centered within the cap. These shafts attach to a
stand via two bearings, which allow the drum to rotate freely
about the horizontal axis. The base of the drum stand con-
tains four adjustment screws for leveling the apparatus.

On one of the drum shafts, a pulley is mounted, and
connected via a belt to a Dayton 1/2 HP 3-phase A/C motor
driven by a Fuji AF-300 controller. This allows the drum to
rotate on its axis at a variable rotation rate � at 5–13 rad/s.
Due to the belt drive connection, the actual motor rotation
rate is potentially different from that displayed on the control
box, so the rotation rate of the drum is measured indepen-
dently using a Pasco PS-2120 rotary motion sensor con-
nected to a computer. Measurements taken over 4 h show the
rotation rate to be stable to within 1%. As all experiments are
started from rest, we also measure the time for the drum to
spin up to its final velocity, and find the drum reaches full
speed within 2–3 s with some wavering in rotation rate �5%
for an additional �10 s.

The drum is filled with 99.5% pure glycerol from Sigma-
Aldrich, and three 440c stainless steel ball bearings pur-
chased from Winstead Precision Ball Co., each of which has
a diameter of 2rb=1.59 cm, density �b=7.65�103 kg /m3,
and mass of 16.1 g. When immersed in glycerol �� f =1.26
�103 kg /m2�, the beads have an apparent buoyant weight
of 0.131 N each.

To maintain constant viscosity, we control the tempera-
ture of the fluid within the drum.31 To do so, we immerse the
drum in a tank of water, in which a copper heat exchanger
has been placed. We connect this heat exchanger to a Thermo
NESLAB RTE-7 digital refrigerated/heated bath, which is
maintained at 25 °C in all experiments. The rotation of the
drum provides sufficient mixing to allow the water within the
tank to be maintained at 24.7�0.1 °C, as measured by a
digital thermometer, independently for each experiment. This
results in a measured kinematic viscosity �=7.69 St �as
compared to 9.36 St for the fluid used in Ref. 30�.

B. Data collection

To image and track the particles, we use a Pixelink
PL-B741F 1.3 megapixel firewire monochromatic camera
placed level with the drum at a distance of approximately
one meter away, and focused so that beads can be observed
from the side. This camera is connected to a personal
computer running WINDOWS XP. A Monarch Instruments
Nova-Strobe DAX is used to light the particles from behind,
which minimizes the motion blur. An opaque screen sur-
rounds the entire apparatus to block ambient light. Com-
pressed movies, lasting up to 6 h in duration, were captured
using a custom application written in C�� and analyzed
with a particle tracking algorithm implemented in MATLAB.
We can locate particle positions with a resolution of
�0.25rb, limited by slight optical distortions.

For each experiment, we initialize the particle positions
by setting the drum rotation rate � to that of a known highly
disordered state, and stopping the drum when the three beads
are distributed equidistant from one another, with approxi-
mately 3.5 particle diameters spacing between the beads. The
exact rotation rate is not important, as it is simply used as a
tool to position the particles. Once the drum is stopped and
enough time allowed to elapse for any fluid motion to cease
��10 min�, we start the rotation of the motor at the desired
rotation rate �, and immediately begin recording video. Vid-
eos are streamed directly to the PC hard drive into a com-
pressed Xvid MPEG-4 AVI file. Video files are then postpro-
cessed using MATLAB. Note that all experiments discussed
follow this protocol, starting the drum from rest, setting the
speed on the motor for the desired �, and then turning the
motor on. In particular, we do not examine hysteretic effects
�although we speculate that there likely are some hysteretic
effects, as discussed below�.

C. Sphere motion and nondimensional numbers

When the drum first begins to rotate, there is a transient
state where the fluid is not yet equilibrated to the new rota-
tion rate. This can be estimated by the Ekman pumping time,

�E =
lc

���
, �1�

based on the cylinder length lc, viscosity �, and final rotation
rate �.32 For our experiment, with ��5–13 rad /s, we have
�E�2.4–3.7 s. This is faster than the time needed for the
motor to reach full speed �tens of seconds as noted above�,
and so the motor is the limiting factor in reaching the steady
state. This implies that the behavior seen in our measure-
ments, lasting several hours in duration, is not dependent on
effects from the initial spin-up of the drum fluid. Observa-
tions of tracer material within the fluid confirm the short
spin-up time. In Sec. III D, we will show that typical time
scales for horizontal motion of the spheres �x direction�
are O�100 s�, two orders of magnitude removed from the
Ekman time �E�3 s. The particle turnover time �the time
for a single cascade to occur� is of order �1 s.

When we are within the cascade regime, the beads re-
peatedly cascade in the y-z plane, being dragged up the front
wall of the cylinder, then falling away from it. We measure

FIG. 1. Sketch of rotating drum filled with viscous fluid and three beads.
These beads are dragged upwards by the front wall of the drum until gravity
pulls them away from the wall and they fall through the fluid. �Based on
Ref. 30.�
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the average speed of the spheres as they rise and fall, and
plot these speeds as a function of � in Fig. 2. The solid line
drawn at v=�rc is an approximate upper limit to the charac-
teristic speed U of the particles. The fact that the upward
velocity is not matched to the wall velocity �disagreement
between the data, circles, and the line, v=�rc� is because the
spheres are not in contact with the outer cylinder, but instead
have a lubrication layer of fluid present.33,34 The downward
velocity depends on �, suggesting that the fluid motion �ro-
tating with the cylinder� acts on the spheres, as well as sim-
ply their own gravitational force. Overall, �rc is a reasonable
estimate of a characteristic velocity of the spheres. Using
this, we can compute the particle Reynolds number
Re=UL /�, which determines the contribution of fluid iner-
tial effects relative to viscous drag. Using the bead radius to
set the characteristic length scale L=rb, the Reynolds number
is30

Re =
�rcrb

�
. �2�

Noting that, for this experiment, rc, rb, and � are all fixed, we
can write a simple linear conversion

Re = 0.591� � 2 – 8, �3�

for the range of � we study. These low values of Re corre-
spond to a laminar flow where both viscosity and fluid inertia
play a role in the fluid flow. Next, to quantify the importance
of viscous forces for influencing the horizontal motions of
the beads, we consider the typical viscous damping time
���L2 /�. Here we use L= lc, to quantify interactions across
the length of the drum, and find ���80 s, on the same order
as the particle interaction time �col�100 s.

If we consider the ratio of inertial forces for the particles
compared with the fluid, we can typify the relative contribu-
tions by comparing the density ratio �b /� f �6.2, which im-
plies that fluid inertia will have less influence upon the bead
trajectories than the Reynolds number might otherwise im-
ply. Due to their large inertia relative to the fluid, the beads
will not tend to follow fluid streamlines exactly.

Finally, we consider the Galilei number to quantify the
ratio of gravitational to viscous forces. The force due to

gravity is Fg= �4 /3��rb
3	�g and the viscous drag is defined

as the Stokes drag F�=6��rbU. Using these we define the
Galilei number as35

Ga =
Fg

F�

=
2rb

2	�g

9�U
� 1.3 – 3.9, �4�

with Ga=3.9 for �=5 rad /s and Ga=1.3 for �=15 rad /s,
using the typical velocity scale as U=�rc. This shows that
the influence due to gravity is always comparable to that due
to viscous drag, which is not surprising. At lower rotation
rates, the force due to gravity is proportionally larger, mean-
ing the particles will not be lifted up as high in the cylinder
�y direction� before falling back down; this is indeed what
we observe. Likewise at higher rotation rates, the forces due
to gravity and viscous drag are equal in magnitude, and the
cascading motion carries the spheres further upward in y. Of
course, the gravitational and viscous forces are not usually in
the same direction, but depend on the angle of the sphere
relative to the cylinder, so this argument should be taken as
giving only a rough sense of the relative magnitudes of the
forces.

III. RESULTS

A. Trajectories

In Ref. 30, Mullin et al. describe three types of behav-
iors for the three bead case. At low Reynolds number
�Re
1.21�, they observed fixed-point behavior, where the
beads were completely independent of each other. At
1.21
Re
2.12, the beads underwent cascading motion in
the y-z plane with the x positions fixed, with the axes defined
as drawn in Fig. 3. It was noted that as they cascaded, the
outer beads were stably out of phase with each other, and the
middle bead was at an intermediate position between the
two. At Re=2.12 there was a reversible transition to a disor-
dered regime where the particles started to wander erratically
in the horizontal �x� direction while still cascading in the y-z
plane. At Re=4.53, there was a transition to what Ref. 30
described as solid body motion. In all cases, the motion in
the y direction is always the simple cascading motion, and
the motion in x is nontrivial; thus, as in Ref. 30, we will
focus on the x motion for our analysis.
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FIG. 2. �Color online� Cascade speeds vup and vdown plotted vs �. The solid
line represents v=�rc, showing that �rc is an approximate upper bound for
the cascade speed.

FIG. 3. �Color online� The axes are defined such that x represents the hori-
zontal direction, y is the vertical, and z is the depth away from the front edge
of the drum. Note that, with our current apparatus, there is no way to mea-
sure z directly.
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In our experiment, we observed five distinct types of
behavior within the cascade regime described by Ref. 30,
three of which are new behaviors. At the lowest rotation
rates, the three beads simply cascade in the y-z plane with no
significant motion in the horizontal �x� direction, correspond-
ing to the cascading observations of Ref. 30. Figure 4�a�
shows a typical example of this periodic trajectory, at a ro-
tation �=5.31 rad /s. Each bead appears to move isolated
from the influence of the other beads. As rotation rate is
increased beyond this initial simple periodic regime, there
are several observed types of trajectories, depending on ro-
tation rate. The two simplest of these are also periodic, but to
differentiate their unique behaviors we have labeled them as
doublet �Fig. 4�b�� and triplet �Fig. 4�c�� states. In the
original study,30 neither the doublet nor triplet states were
mentioned.

In the doublet state, two of the beads will lock together
so that they are cascading in one another’s wakes. The de-
termination of which two beads will tend to pair up is a
result of initial conditions, and not a systematic trend in the
experimental apparatus. Simply stopping and restarting the
drum at the same rotation rate can sometimes switch which
two beads will form a pair.

In the triplet state, all three beads come together and
cascade in line with one another, in a similar fashion to the
doublet state. The three beads can be stacked on top of each
other, touching, or they can be spaced out within the drum,
following each others’ wakes without touching, depending
on whether the beads are closer to in phase or out of phase as
they approach one another. Both the doublet and triplet states
are stable configurations and have been tested to remain
locked for periods exceeding 24 h in duration.

At certain rotation rates, the beads will wander errati-
cally in the x direction. For chaotic trajectories with a low
enough �, there will be a bias to one side of the drum or the
other. This biased disordered trajectory is illustrated by a
typical example, as shown in Fig. 4�d�. Two of the three
beads will tend to repeatedly approach and interact with one
another, while the third bead will remain segregated at the far
end of the drum. This third bead still experiences long range
hydrodynamic forces from the other two beads, and can be
seen to move in phase with the collisions of the other two.
The determination of which two beads will tend to pair up is
again seemingly a result of initial conditions, analogous to
the doublet state. Like the doublet and triplet states, this
biased disordered behavior was not seen previously.30

For higher � disordered states, the beads explore a more
rich set of interactions, where they wander somewhat errati-
cally in the horizontal direction, occasionally even colliding
with each other. The collisions observed include pair colli-
sions �left-middle and right-middle�, as well as triplet-type
collisions where all three beads come together. Figure 4�e�
shows a typical example of this behavior, which we call the
fully disordered state, similar to the behaviors illustrated in
Ref. 30. In pair collisions, beads can be either in phase or out
of phase with one another �in the cascading direction�. In
phase collisions are more direct, with the beads immediately
colliding and moving away, while out of phase collisions
often involve the beads cascading over one another several
times before colliding. Triplet-type collisions generally in-
volve two beads cascading over one another while a third
bead approaches and collides with them. Note that when we
have out of phase collisions, the two beads have identical x
positions for a while; our data acquisition rate is not fast
enough to carefully follow their motion in y, and we cannot
distinguish between the beads at that point. Thus, it is likely
that in some cases, the two beads exchange places, but we
cannot detect this. For example, in Fig. 4 the middle bead is
always drawn with the same color, but it is important to
recognize that it is quite possible that the identity of this bead
changes at collisions.

B. Phase diagram

To probe the dependence of the particles’ behavior on
rotation rate, we recorded 68 videos at rotation rates ranging
from 5.1 to 12.3 rad/s. An analysis of these videos allows us
to map out a phase diagram, as shown in Fig. 5. The colored
blocks denote different regimes, and gray blocks represent
regimes where there is some overlap of behavior, or transi-
tions between two regimes. The width of these transition
blocks is due to uncertainty both due to the measurements
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FIG. 4. �Color online� Typical examples of trajectories corresponding to the
five regimes we observe. �a� Periodic trajectory with �=5.31 rad /s. �b�
Stable doublet state with �=7.14 rad /s. �c� Stable triplet state with
�=7.88 rad /s. �d� Biased chaotic state with �=6.56 rad /s. In such states,
the center bead strongly interacts with only one of the outer beads. �e� Fully
chaotic state with �=8.51 rad /s. For all figures, the varying thickness of
the lines is a result of particle position uncertainty due to optical distortion
from the curved drum walls. This distortion is exaggerated due to parallax
near the end caps and minimized in the center of the drum.
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themselves, and also to the discrete, digital motor control
circuit, which limits the resolution of � to 1% as noted in
Sec. II.

With increasing rotation rate �, the system undergoes a
phase transition from periodic to biased disordered behavior
at ��5.7, which corresponds to a Reynolds number
Re�3.4, comparable to the transition from periodic to cas-
cading motion seen in the experiment of Mullin et al.30 at
Re=2.12. The difference in Re is perhaps due to our different
Galilei numbers; because their viscosity was 1.2 times larger
than ours, their values for Ga are smaller by that same ratio.

In our observations, the biased disordered regime is
followed by a long doublet regime. After this doublet regime,
we find a small window of triplet behavior around
��7.8 rad /s, which begins a mixed region of behavior,
consisting of slices of both disordered and triplet behavior,
extending until ��10.4. For rotation rates higher than those
at which we find triplet behavior, we find reliable doublet
trajectories. For high enough rotation rates, we should tran-
sition into the motion Mullin et al.30 described as solid-body.
We do not probe this regime due to limitations of our motor
driving the rotating drum.

This phase diagram illustrates a rich landscape of inter-
esting regimes of particle behavior with a new level of detail.
Specifically, Ref. 30 identified only one simple, contiguous
block of disordered behavior, while we have identified mul-
tiple windows of periodic behavior embedded within large
disordered regimes, as well as previously unidentified peri-
odic behaviors. Furthermore, the distinction between two dif-
ferent types of disordered behavior illustrates the complexity
of the system.

There are two inter-related caveats to be considered
when discussing the phase diagram in Fig. 5, transient be-
havior and motor drift. Transients can pose potential issues
in situations where the transients last longer than the duration
of an experiment. In a given experiment, after the drum be-
gins rotating, the system takes some time to settle into its
long-term behavior. For example, in Fig. 4�c�, the particles
move back and forth across the drum, colliding several times
before finally coming together to form the triplet state at
T�12 min. In this case, the time is small compared with the

typical experimental durations �T�300 min�. However, in
other experiments, such as that shown in Fig. 6, transient
behavior can persist for longer periods of time. Here, the
trajectory is seemingly disordered for �120 min before set-
tling into a stable triplet configuration.

To further explore the impact of these long transient tra-
jectories, we examine each trajectory and manually deter-
mine an approximate transient duration. Figure 7 shows this
transient duration plotted versus the rotation rate of the
drum. The symbols in the graph represent the type of trajec-
tory found after the transient behavior has died out.

Many trajectories have relatively short transient times,
with transients rarely exceeding 60 min in duration. How-
ever, there are also trajectories which contain much longer
transient durations, with most of these long-duration tran-
sient trajectories clustered around the transitions between
different phases. One possible explanation for the long-lived
transients is the drum rotation rate, which as Sec. II A noted
is stable to within �1%. If we consider the transition around
�=8 rad /s, we see that, for a given trajectory, � could vary
from 7.92 to 8.08 rad/s. Thus a possible source for the long
transient behaviors is drift in rotation rate of the drum motor.
If we imagine small windows of triplet behavior within a
disordered regime, a drum rotation rate which starts within
the disordered regime could drift into the triplet regime,
leading to a trajectory which eventually “finds” the triplet
state. As already discussed, the triplet state is very robust and
stable, and thus once a trajectory finds this state, it would be
very difficult to break out of it, even if the rotation rate

FIG. 5. �Color online� Phase diagram showing the behaviors observed at
various rotation rates. The symbols below the bar indicate individual
observations.
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FIG. 6. �Color online� In this experiment, at �=8.05 rad /s, the particle
follows a seemingly disordered trajectory for �120 min, but then settles
into a stable triplet state.
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out.
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wanders subsequently. The fact that long transients tend to
cluster around the transitions between regimes supports this
hypothesis.

This issue of motor drift also has the potential to obscure
some detail in the phase diagram. The motor control has
finite resolution in available rotation rates, and so there may
be small windows of behavior which we are unable to locate.
Similarly, even if we did sample these windows, motor drift
could take the rotation rate out of a window if it existed
within a very narrow range of rotation rates.

C. Qualitative fluid behavior

To qualitatively describe the fluid flow within the drum,
we added a small quantity of Kalliroscope rheological fluid
to the glycerol within the drum. Kalliroscope is a water-
based suspension of microscopic crystalline platelets. When
placed within a moving fluid, the platelets tend to align such
that their long axis is parallel to the plane of shear. Thus, the
platelets will reflect different amounts of ambient light de-
pending on the local flow of the fluid. This allows us to
visualize the flow behavior in each of the states.

Within the periodic regime, the three beads each have a
well defined wake, which is bounded on each side by swirl-
ing, vortexlike behavior rotating about an axis that extends in
the radial direction, as seen in Fig. 8�a�. At the midpoints
between each pair of particles, there are well defined shear
planes which span the entire height of the drum.

In the doublet regime, the two beads which are paired up
form a wake which keeps them aligned with one another.
This wake is bounded on each side by vortexlike regions
where there is swirling fluid flow, as shown in Fig. 8�b�. The
single bead, well-separated near the far end of the drum, also
has a well defined wake, but there is significantly less vor-
texlike behavior in the fluid.

In the triplet regime, there is one strong wake in which
all three beads cascade �not shown�. There is a large amount
of vortexlike swirling that bounds this wake and likely leads
to the observed stability of the triplet state.

The flow within the biased disordered regime �not
shown� appears similar to that within the periodic regime,
except when the beads collide. As the beads approach a col-
lision, their wakes overlap and partially merge. At the same
time, as the beads are approaching one another, the shear
plane that separates them oscillates with greater and greater
amplitude, until it breaks up as they approach. After a colli-
sion, when the beads are moving apart, the fluid to the out-
side undergoes a strong vortexlike swirling until the beads
are well separated.

Within the fully disordered regime, the beads’ wakes are
often less well defined and more difficult to identify, with
large regions of complicated fluid flow, as shown in Fig.
8�c�. However, when the beads are well separated, their
wakes are evident, with the wakes becoming mixed and ob-
scured as the beads approach one another. The well defined
shear planes seen separating the beads in previous cases are
not evident in the fully disordered regime.

In all cases the visualization makes it clear that there is
no turbulence, in agreement with the low Reynolds number
�Re�2–8, see Sec. II C�.

D. Times between collisions in disordered states

From Fig. 4�e�, we note that the particles spend the bulk
of their time in a well-separated state where the three par-
ticles are spaced far apart in the drum. This configuration is
similar to the stable configuration seen in the periodic state
shown in Fig. 4�a�. Disturbances of the trajectories away
from this well-separated configuration are relatively short by
comparison. An interesting question, then, is how much time
the particles spend in this well separated configuration.

A visual inspection of representative disordered trajecto-
ries seems to indicate a typical time between collisions of the
particles. For example, in Fig. 4�d� many of the collisions
between particles occur roughly 1–2 min apart. Fourier spec-
tra of the x trajectories are noisy and do not depend in any
obvious way on the drum rotation rate �. These Fourier
spectra give an indication of typical collision time scales,
with typical peak frequencies f at 0.3–1.5 cpm with large
changes in f at nearly the same �, corresponding to collision
times between 0.6 and 3.3 min.

To further examine the collision times, we analyzed the

FIG. 8. Kalliroscope images show the fluid behavior in various phases: �a�
periodic ��=5.31 rad /s�, �b� doublet ��=7.14 rad /s�, and �c� chaotic
��=8.51 rad /s�.
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time between particle interaction events. To define these
events, we note that deviations from the well-separated con-
figuration can be identified by simply looking for local
minima and maxima in the trajectory x2 of the middle bead.
Figure 9 shows the distribution of the time � between se-
quential peaks in x2 for three representative experiments
within the disordered regime. There is no simple trend in the
shape of these graphs with varying �. Overall, the distribu-
tions of times are all broad with standard deviations compa-
rable to their means, reflecting that the particle trajectories
are unpredictable. That is, particles spend a significant time
in well-separated positions, and then begin to come together
for a collision event after a variable amount of time. Inves-
tigation of sequential pairs of dwell times, �i, �i+1, showed no
structure, further implying unpredictability. The state at
�=8.45 rad /s shows a bimodal distribution, which we ob-
served in only two out of the twenty disordered states; the
other state was at �=8.91 rad /s, with several unimodal dis-
tributions observed at intermediate values of �.

E. Reduced dimensionality

To this point, all analysis has focused on the horizontal
�x� direction trajectories, and neglected cascading in the y-z
plane. To further simplify the number of variables used in the
data analysis, we sought a reduced dimensionality set of
variables which still contains the interesting behavior of the
system. We note that, once trajectories have settled into their
long-term behaviors, and the transients have died out, the
center of mass of the system is constant within the combined
noise in the three particle trajectories. This implies that the
absolute positions of the particles are not needed to capture
the interesting behavior of the system, and we can use a

reduced dimensionality to study the behavior. Specifically
we use the distances of each outer bead from the center bead

x21� = �x2 − x1�/2rb, �5�

x32� = �x3 − x2�/2rb. �6�

Figure 10 shows a sample trajectory comparing the original
coordinates with the reduced coordinates.

As shown in Fig. 10, there are certain configurations in
which the system spends more time, and other configurations
that are only visited briefly. Configurations with the three
beads well separated appear to be most common, while situ-
ations where the beads are close together are shorter-lived.
To quantify this, we plot a two dimensional histogram of the
configurations, which gives us a way to visualize the relative
amount of time each particle spends in various regions of
phase space. Histograms are plotted with a logarithmic inten-
sity, so rare events can still be identified. In each experiment,
we visually inspect the data set and remove any obvious
initial transient behavior manually before analysis. For ex-
ample, the analysis of a triplet data set only includes the time
after the three beads have lined up.

Figure 11 shows an example of one of these histograms
for the same experiment shown in Fig. 10. Notice that the
darkest region is in the area around x21� �x32� �5–6, corre-
sponding to a configuration where the three beads are spread
far apart, and spaced roughly equidistantly. There are also
small clusters at x21� �7.5 and x32� �0, and its mirror x21� �0
and x32� �7.5, which correspond to configurations where two
beads are close together, and the third bead is far away. Fi-
nally, there is another faint cluster at x21� �0 and x32� �0,
corresponding to a state where all three beads are grouped
together. The faintness of this cluster implies that very little
time is spent in this configuration.

The histograms show how the different phases of the
system explore phase space. Figure 12�a� shows a schematic
of typical histograms for periodic, doublet, and triplet trajec-
tories. Periodic trajectories have well-separated beads and
thus the weight of the histogram stays concentrated at point
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FIG. 9. Distributions of time between “collisions” where two or three beads
come close together. These all correspond to fully disordered states with the
drum rotation rates �a� �=7.99 rad/s, �b� �=8.45 rad/s, �c� �=9.82 rad/s.
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FIG. 10. �Color online� �a� Disordered particle trajectories for an experi-
ment with �=8.79 rad /s. Recall that we cannot distinguish the spheres
from one another, so that by definition x3�x2�x1. �b� The same trajectories
in reduced coordinates. The minima in these simplified trajectories indicate
points where particle pairs approach one another.

033305-7 Complex dynamics of three interacting spheres Phys. Fluids 22, 033305 �2010�



1. Doublet states have a histogram with points clustered
tightly near one of the locations marked 2; for example, if
beads 2 and 3 are together in the doublet state, then x23� =0. In
the triplet state, the three beads coincide in their x coordi-
nates and thus the histogram is at the origin, where point 3 is
shown. Figure 12�b� shows a biased disordered trajectory,
where the beads spend time in the same region of phase
space as the periodic state, but also wander erratically in the
x direction, smearing the histogram in the direction of the
bias �in this case, beads 2 and 3 come close together�. In Fig.
12�c�, we see a disordered trajectory. The beads explore the
phase space around the locations of periodic, doublet, and

triplet states �points 1, 2, and 3 in Fig. 12�a��. Time is also
spent in an intermediate configuration �x12� �x23� �3.5� where
the three beads are closer together than in the periodic tra-
jectory, but not clustered such as in the triplet state. This is in
contrast to the disordered state shown in Fig. 12�d�, where
the beads spend the bulk of their time well-separated, as in
the periodic state, with occasional doubletlike collisions. The
fact that these states occur at rotation rates which are very
similar ��=9.25,9.36 rad /s� illustrates how sensitive the
experiment is to the rotation rate.

F. Entropy

To quantitatively study the extent to which a given tra-
jectory explores phase space, we define a configurational en-
tropy based on these histograms. If we first normalize a
given histogram so that the sum of all bin values is equal to
unity, the histogram will represent a probability distribution
P with matrix elements Pij. We then define the entropy

S = − k	
ij

Pij ln Pij, with k 
 1. �7�

This entropy value is calculated for each individual tra-
jectory and plotted versus rotation rate in Fig. 13. The triplet
states have the lowest entropy, followed by the periodic, dou-
blet, biased disordered, and finally the fully disordered states
with the highest entropy. To quantify error in entropy mea-
surements we split each trajectory into two halves, and cal-
culate the entropies S1 and S2 for each half independently.
Then the error can by defined as

�S = �S1 − S2� , �8�

yielding the error bars shown in Fig. 13.
As could be expected, the entropy is lowest in the sim-

plest states: the triplet, doublet, and periodic states. Nonzero
values for the entropy correspond to slight wobbling of the
particles around their mean positions in each state. At values
of � corresponding to transitions between states, Fig. 13
shows sharp changes in the entropy. For example, the biased
disordered state has entropy values markedly higher than the
adjacent doublet states. The fully disordered states have the

FIG. 11. �Color online� A typical two dimensional histogram for a disor-
dered trajectory at �=8.79 rad /s. The axes represent the distances between
the pairs of particles, normalized by the particle diameter, and color repre-
sents the number of points that were counted in each bin. Darker shades
indicate more prevalent configurations. This experiment has a calculated
entropy S=6.33.

FIG. 12. �Color online� Histograms for each phase of behavior clearly il-
lustrate the amount of phase space they explore. �a� Schematic of typical
areas occupied by the nondisordered trajectories. “Periodic” trajectories
such as shown in Fig. 4�a� appear as a tight cluster of points near position 1.
“Doublet” trajectories reside at one of the two locations marked as position
2. “Triplet” trajectories have all the particles at the same x position, and thus
the histogram for these states is a tight collection of points near the origin,
marked as position 3. �b� A histogram for a biased disordered trajectory at
�=6.05 rad /s. For this state, the entropy S=3.52. ��c� and �d�� Histograms
for disordered trajectories at �=9.25,9.36 rad /s, respectively. The entro-
pies of these states are S=6.82,6.49.
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FIG. 13. �Color online� The entropy for each rotation rate, calculated
from the 2D histograms. At some rotation rates ���6.5 rad /s and
��8–10 rad /s�, multiple states can be seen at the same or similar values
of �. This is due partially to motor stability and the presence of long tran-
sients �as discussed in Sec. III B� and partially because of the sensitivity to
the exact value of �. In some cases, different states are present for closely
spaced values of �.
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highest entropy. Within each regime, there can be moderate
fluctuations of the entropy values, with little systematic de-
pendence on �.

Much as the histograms provide a visual indication of
the degree to which a trajectory explores phase space, these
entropy values provide a qualitative measure of that explo-
ration. Low entropy periodic, triplet, and doublet regimes do
not explore phase space much, as expected. Disordered be-
haviors, on the other hand, have large entropies, correspond-
ing to extensive exploration of phase space. These entropies
vary little by comparison to the large jumps between re-
gimes, indicating that the amount of phase space explored by
disordered behaviors does not vary much with rotation rate.

The magnitude of these entropy values varies with the
size of bins used for the histograms. We divide each axis into
60 divisions, giving a total of 602 bins, with each bin having
a width w�rb /3. The qualitative results are unchanged with
402 or 802 bins.

IV. SUMMARY

We have studied a geometrically simple system contain-
ing three particles moving within a fluid-filled rotating drum
which yields a rich and varied set of behaviors. The phase
diagram for this system showed five types of behavior. The
first is a periodic regime where the beads simply cascade in
the y-z plane. The second is a previously unreported biased
disordered regime where two of the beads wander erratically
in the horizontal x direction and collide with one another.
The third is a doublet regime, where two beads pair up and
cascade on top of one another while leaving the third bead
behind. There is also is a mixed disordered regime spanning
a wide range of rotation rates, where the beads wander er-
ratically in the horizontal direction, with all three beads in-
teracting and mixing. Within this mixed regime, there are
small windows of rotation rates which result in triplet behav-
ior, where all three beads will line up and cascade on top of
one another. Finally, we find a regime where triplet behavior
is the only type of trajectory seen.

The question of transient behavior deserves significant
attention and exploration. We find disordered states that are
persistent over many hours. However, based on similarities
between the disordered states and the transient behavior of
the triplet states, it is possible that the disordered states could
eventually fall into a stable triplet state. Our “fastest” ob-
served disordered states have mean collision times of ap-
proximately 0.6 min, and our longest observations are up to
360 min, so at most we have 600 collisions observed in
disordered states without a transition to a triplet state, thus at
least showing that if these are transients that they are very
long-lived.

Another interesting question is that of dependence on
initial conditions. Due to the way the particles were posi-
tioned within the drum, it was difficult to control their exact
starting positions. However, the long-term statistics of the
system’s behavior were reproducible, within the limits of
motor drift and transients.

We have also tried preliminary experiments with a
longer drum �thus larger aspect ratio�, and find that particles

prefer doublet or triplet states; we do not see long-lived dis-
ordered states in longer drums. This suggests that a key to
the disordered states is indeed the finite drum size that forces
the beads to interact with each other. While the details we
report here depend on the exact system parameters �such as
aspect ratio, viscosity, and sphere sizes�, the primary point is
that even in this simple experiment we can study long-lasting
complex dynamics of three interacting spheres. Furthermore,
within the previously observed disordered regime �Ref. 30�,
there is a richness of behavior with the amount of phase
space exploration changing dramatically with only slight
changes of rotation rate. These results reinforce the conclu-
sions from simulations of three sedimenting spheres,28 which
found sensitive dependence on initial conditions; our work
shows that this sensitivity extends to the control parameter,
as well �the rotation rate� when the spheres cannot com-
pletely separate.
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