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often experimentalists study particulate samples that are nominally monodisperse. In 
reality, many samples have a polydispersity of 4–10%. At the level of an individual particle, 
the consequences of this polydispersity are unknown as it is difficult to measure an individual 
particle size from images of a dense sample. Here we propose a method to estimate individual 
particle radii from three-dimensional data of the particle positions. We first validate our method 
with simulations. We then apply our method to experimental data of colloidal suspensions 
observed with confocal microscopy. We demonstrate that we can recover the full particle size 
distribution in situ. Finally, we use our method to study the relationship between homogeneous 
colloidal crystal nucleation and particle sizes. We show that nucleation occurs in regions that 
are more monodisperse than average. 
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A wide variety of techniques exist for three-dimensional (3D) 
imaging of collections of particles, such as granular materials,  
soils and colloidal suspensions1,2. Our particular inter-

est is in colloidal suspensions; these have been successfully used 
as model systems for understanding phase transitions for several  
decades3,4, and are interesting in their own right owing to industrial 
relevance5. Confocal microscopy can be used to take 3D images of 
fluorescent colloidal particles deep within a sample2,6,7. When cou-
pled with particle tracking techniques, the motion of thousands of 
individual colloidal particles can be followed over long periods of 
time8–10. This technique has been used to investigate the colloidal 
glass transition7–9,11, crystallization12–14, colloidal gels15–17, capil-
lary waves18,19, sedimentation12,20 and a variety of other questions 
(see ref. 2 for a review). One advantage of confocal microscopy of 
colloids is that particle tracking data are similar to simulations that 
also provide particle positions over long periods of time.

However, experimental samples are always polydisperse: even for 
a nominally single-component sample, the particles have a variety 
of sizes21. This is quantified by the polydispersity p, defined as the 
s.d. of particle radii divided by the mean radius. For many samples, 
p~0.04–0.10 (ref. 21). Numerical simulations show that the effects 
of the particle size distribution are not negligible. For example, 
crystal nucleation is difficult or impossible for more polydisperse 
samples22,23. The crystal–liquid phase boundary depends on the 
polydispersity24. The sensitivity to volume fraction near the glass 
transition depends on the composition in nontrivial ways25,26. 
Experimentally, the influence of polydispersity on colloidal crystal-
lization has been demonstrated27,28, and there is also some under-
standing of how polydispersity influences the rheological behaviour 
of a colloidal sample29. However, these are limited to studies of the 
spatially averaged properties of the sample. Microscopy is useful for 
local properties, but particle size fluctuations of a few per cent are 
not easily detectable. It would be desirable to know particle sizes 
for more direct comparison with simulations. Furthermore, in some 
cases, neglecting these sizes in an experiment can lead to wrong con-
clusions. One example is that the pair correlation function g(r) can 
show a qualitatively incorrect dependence on control parameters if 
the particle sizes are treated as all identical30. A second example is 
that the apparent compressibility of a random close-packed sample 
depends qualitatively on whether individual particle sizes are taken 
into account31–33.

In this work, we introduce a general method for using 3D data  
to determine the size of individual particles in any moderately  
concentrated sample, in general with volume fractions φ0.4. 
We use simulation data to verify that our method works well in a  
variety of sample types. We then check our method with experi-
mental data from confocal microscopy, which compares well with 
data on the same samples from holographic microscopy. Finally, we 
demonstrate the utility of our method using previously published 
experimental data from confocal microscopy of colloids. In particu-
lar, we show that colloidal crystal nucleation is sensitive to the local 
polydispersity: nucleation happens in locally monodisperse regions. 
Our method is not limited to confocal microscopy and colloidal 
samples, but rather works with any data of the 3D positions of a 
collection of particles.

Results
Size estimation algorithm. Owing to diffraction limits, it is 
difficult to directly determine the radii of individual particles from 
microscopy images to better than  ± 0.1 µm (ref. 34). Defining the edge 
is somewhat arbitrary and varies depending on particle properties 
and the details of the illumination. Other 3D imaging techniques 
have similar issues1. In contrast, it is much easier to calculate the 
mean radius a  of particles with a variety of techniques21. Likewise, 
from the centres of particles, the separations between neighbouring 
particles rij can be easily calculated. Our estimation method for 

particle sizes uses only a  and rij. The key idea of our method is that 
a large particle will be slightly farther from its neighbours and thus 
have larger values for its rij, and likewise a smaller particle will have 
smaller values of rij.

To start, we relate the pairwise separations rij as

r t a a tij i j ij( ) ( ),= + +δ

where particle j is a nearest neighbour particle of particle i, rij is 
the measured distance between i and j, ai and aj are their radii, and 
ij(t) is a surface-to-surface distance between their particles. These 
distances are sketched in Fig. 1a. When choosing neighbours, we 
use the particles j that are closest to i (smallest separations rij).  
Typically, we use Z = 5–7 of these closest neighbour particles; this 
choice is justified below. Often these data come from particle track-
ing, and so rij(t) and ij(t) depend on time t. Next, we take an  
average of rij with respect to the nearest neighbour particles j, and 
then 〈rij(t)〉j = ai + 〈aj〉j + 〈ij(t)〉j, where 〈〉j means an average over 
particle j. Thus, we obtain

a r t a ti ij j j j ij j= 〈 〉 − 〈 〉 − 〈 〉( ) ( ) .δ

This is exact, but the quantities ij(t) are unknown. We estimate this 
by replacing ij(t) with its time- and particle-averaged value, the 
mean gap distance d ≡ 〈 〉 −r t aij i j t( ) , , 2  , where the average is over 
all particle pairs and all times. Our algorithm is then:

a t ai
( )( ) ,0 =

a t r t a ti
n

ij j j
n

j
( ) ( )( ) ( ) ( ) ,= 〈 〉 − 〈 〉 −−1 δ

where the superscripts denote iteration. The more we iterate  
equation 4, the more information we obtain from particles far away 
from a given particle. In fact, a ti

n( )( ) is unchanged for n≥10 as ai
( )10  

includes the information from several thousand particles, thus we 
fix n = 10 for the number of iterations in this paper. Of course, the 
particle radius does not depend on time, so after the 10th iteration, 
we time average a ti

( )( )10  to obtain the estimated particle radius ai
( )10 .  

Time averaging after each iteration of equation 4 does not change 
the results.

Uncertainty of the estimation. There are several sources of  
uncertainty in this estimation. First, there is the uncertainty of each 
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Figure 1 | Probability distribution function of ij. (a) sketch defining 
key distances. (b) Probability distribution function of δij from simulation 
data for several systems. The systems and the number of neighbours Z 
in each case are: a dense liquid with φ = 0.51 (solid red curve, Z = 7), a 
random close-packed sample (dashed blue curve, Z = 5) and a colloidal gel 
(dash-dotted green curve, Zi = 5ci/13). The details of the choices of Z are 
discussed in the text.
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particle position. Typically this is about 5–8% of the mean radius, 
leading to a 8–10% uncertainty of rij (refs 10,35). However, these 
errors are nearly time-independent, so those errors are greatly 
diminished by time averaging. Second, our approximation for δ  is 
weaker in the case that the distribution of δij(t) is broad. Distribu-
tions of δij are shown in Fig. 1b. As we choose neighbouring particles 
j to be those closest to particle i, choosing more neighbours results in 
a broader distribution of δij because the additional neighbours have 
a larger δij by construction. That is, δ  increases monotonically with 
increasing Z. However, using too few neighbours means that the 
average 〈rij(t)〉 in equation 4 is poor. Below, we use simulation data 
to determine that Z = 5–7 nearest neighbours is an optimal choice. 
Third, independent of a given choice of Z, some particles will simply 
be farther from their neighbours, and some will be closer. For exam-
ple, in a dense suspension this relates to the size of the ‘cage’ formed 
by the nearest neighbour particles9. Again, time averaging helps. If 
particles can rearrange and find new neighbours, then δ  becomes  
a better approximation for 〈δij(t)〉t. Fourth, an additional approxima-
tion is that we use 〈 〉 ≈δ δij  to go from equation 2 to equation 4,  
which assumes that δij is uncorrelated with the particle size ai. Our 
simulations suggest that this is reasonable, but one can imagine 
situations where it might not be (for example, with charged parti-
cles where the charge depended on particle size). In summary, the 
greatest strength of our algorithm is time averaging, and past that, a  
sensible choice for the number of nearest neighbours Z is useful.  
Our tests show that time averaging over ~20 different times is  
sufficient for reasonable results.

Verification of the estimation. To verify our radius estimation 
method, we simulate a variety of systems and compare the estimated 
radius of each particle with its true radius. The error is given by 
δa a ai i i= (10) − , where ai

(10) is the estimated value and ai is the true 
value.   ∆a a ai i≡ 〈 〉δ /  is the mean fractional error in the estimated 
particle radius. Also relevant is the polydispersity p of the simulated 
sample, defined as p a a ai= ( ) /〈 − 〉2 , where the averages are over all  
particles i. A priori, the best guess for each particle size is a  with a 
fractional uncertainty p. If the mean estimation error ∆a is less than 
p, the estimation method improves our knowledge of the particle 
sizes; we will show this is true for the simulated data.

Our first test case is a random close-packed sample. In such  
a sample particles do not move, and so time averaging cannot be 
used. However, particles are packed so that they can contact each 
other, that is, δ  is close to zero. The number of contacting neigh-
bours varies from particle to particle, so it is not clear how many 
neighbours should be considered. Accordingly, we plot ∆a as a func-
tion of Z in Fig. 2a. We find that ∆a is a minimum at Z = 5, and is 
much smaller than p (0.01 versus 0.07 in this case). In practice we 

find that the Z = 5 closest neighbours are nearly always in contact, 
and δ ≈ −10 4a. Figure 2a shows that increasing Z to include some 
non-contacting neighbours only increases the uncertainty a small 
amount.

It is possible that while ∆a is small, that there are systematic errors 
depending on the real particle size ai. To test this, in Fig. 3a we show 
the ratio between the estimated radius and the given radius a ai i

(10)/  
as a function of ai for a polydispersity p = 0.07 random close packing 
(RCP) sample. The symbols and the error bars correspond to the 
mean and s.d. of the distribution of a ai i

(10)/  between [ai,ai + 0.01], 
respectively. a ai i

(10)/  should be 1 if our estimation is perfect  
and indeed we find a ai i

(10)/ = 1.000 0.013±  . The quality of the  
results is nearly uniform as a function of particle size. To check the 
validity of our method for RCP samples with different polydispersity,  
we plot the uncertainty ∆a as a function of sample polydispersity p 
in Fig. 2b. We find ∆a≈p/6 (ref. 33).

A colloidal gel shares a similarity to a RCP sample (touching or 
nearly touching particles), and has a significant difference (much 
lower volume fraction). As an example of how to adapt our algo-
rithm, we consider a simulated depletion gel36. In a colloidal gel, 
particles are stuck to their neighbours and form a large network. 
Often the attractive interactions have a range, which is true for 
depletion gels (see discussion in Methods). Thus the distribution  
of δij for gels can be slightly broader than that for RCP, as shown in 
Fig. 1b, though the mean average of δij is close to 0. Some time aver-
aging is possible, although such samples are frequently nonergodic.

The contacting particles make gels similar to RCP samples 
locally. However, the contact number can fluctuate greatly in a col-
loidal gel. Therefore, rather than fixing the number of neighbours Z 
to average over, we use Zi neighbours for the average (equation 4).  
To determine Zi, we define the coordination number ci as the 
number of particles within a distance 2.8a of particle i, where 2.8a 
is the first minimum of the pair correlation function. We find the 
average coordination number c ≈ 13.1 for a RCP sample, but this 
can be smaller for some gels15. Thus for every particle we select the 
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Figure 2 | Dependence of estimation uncertainty ∆a on parameters.  
(a) The uncertainty ∆a as a function of the chosen number of neighbours 
Z used for the averaging. The circles, triangles and squares correspond to 
∆a for volume fractions φ = 0.51, 0.56 and 0.64 (RCP), respectively. In each 
case, the sample polydispersity is p = 0.07. (b) ∆a as a function of the bulk 
polydispersity p. The circles and the triangles correspond to ∆a at RCP  
and φ = 0.51, respectively. The solid lines are the fitting lines for ∆a.
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Figure 3 | The estimated radius a /ai i
(10)  as a function of the true radius 

ai for four simulated systems. (a) RCP, (b) a colloidal gel at φ = 0.10, (c) 
a nominally monodisperse suspension at φ = 0.51 and (d) a nominally 
binary suspension at φ = 0.51. For (a–c), the polydispersities are p = 0.07. 
For the binary sample, the size ratio is 1:1.3, the number ratio is 1:1, and 
each species has an individual polydispersity of p = 0.04. The error bars 
correspond to the s.d. of of a ai i

(10)/  between ai and ai + 0.01. The insets 
show sketches of each system.
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number of neighbours using Zi = 5ci/13 where we round Zi to the 
nearest integer, and as always we select the Zi particles closest to 
particle i to be the neighbours. For tenous gels at dilute concentra-
tions, for many particles Zi is fairly small; also, δij has a broader dis-
tribution, and so ∆a will be worse than the RCP case. However, ∆a 
is improved by time averaging. Figure 3b shows the ratio between 
the time-averaged estimated radius and the given radius a ai i

(10)/  as 
a function of the true radius ai for the colloidal gel. We find that 
a ai i

(10)/ = 1.000 0.018±  . ∆a = 0.018 is much smaller than the poly-
dispersity p = 0.070.

Moving from gels, we next consider a dense suspension of purely 
repulsive (hard-sphere) particles. Here, no particles are in contact, 
so δij has a much broader distribution (Fig. 1b); however, time 
averaging is even more powerful. We show a ai i

(10)/  as a function 
of ai at φ = 0.51 in Fig. 3c, finding a ai i

(10)/ = 1.000 0.014±  . Yet again 
∆a = 0.014 is much smaller than the polydispersity p = 0.070.

For a dense suspension, it is not obvious how many nearest 
neighbours should be used in the average (equation 4), so we plot 
∆a as a function of Z in Fig. 2a for two different volume fractions. 
∆a is minimized at Z = 7 for the non-RCP samples (circles and tri-
angles in the figure), so we fix our choice Z = 7 for all our φ < 0.6 
experimental data (discussed below). Figure 2a demonstrates that 
∆a does not depend too sensitively on this choice. However, it 
should be expected that for a more dilute system, the importance 
of caging decreases, and the number of neighbours a particle has 
will fluctuate significantly. For fixed polydispersity p = 0.070, we find 
∆a = 0.023 for φ = 0.45 and ∆a = 0.060 for φ = 0.40. This suggests that 
for φ0.40, the estimation method may not be useful without fur-
ther modifications.

To check the influence of the sample polydispersity at fixed 
φ = 0.51, we vary p with results shown in Fig. 2b (triangles). We find 
∆a≈0.005 + p/7, suggesting that the estimation is useful for samples 
with p > 0.01, that is, any realistic sample. ∆a is non-zero when p = 0, 
in contrast to the RCP case. This is due to the distribution of δij in a 
dense but non-contacting sample.

The last case we examine with simulation data is a nomi-
nally binary sample. We simulate a dense suspension composed 
of particles with a size ratio 1:1.3 (mean sizes 0.877 and 1.14) 
and number ratio 1:1. For both ‘small’ and ‘large’ particles, there 
is a polydispersity p = 0.04. The results are shown in Fig. 3d, and  
we find a ai i

(10)/ = 1.000 0.024±  at φ = 0.51. (Here we have fixed 
Z = 7.) Again, there is no strong dependence on the true particle size 
ai. However, the uncertainty ∆a for the binary mixture is larger than 
what is found for the nominally monodisperse distribution. This  
is consistent with the overall polydispersity of the sample being 
larger, p = 0.14.

An important use of our technique is to measure a particle size 
distribution in situ; we wish to validate this idea with the simula-
tion data. To do this, we compare the estimated radius distribution 
P ai( )(10)  with the true radius distribution P(ai) in Fig. 4a,b. In both 
the nominally monodisperse sample and the nominally binary sam-
ple, the estimated distribution (symbols) is quite close to the true 
distribution (curves). We find that for a single-species sample with 
a Gaussian distribution of radii with polydispersity p, the appar-
ent polydispersity is p a2 2+ ∆ . Given that for most situations we  
have shown ∆a p  , our technique will only slightly increase the 
apparent polydispersity of a sample.

One key difference between simulations and experiments is the 
boundary condition. Our simulations have periodic boundaries. In 
an experiment, we cannot find all nearest neighbours of a particle 
when the particle is located at the edges of an image. This situation 
is similar to colloidal gels, where the number of nearest neighbours 
varies for each particle, and we adopt the same solution used there. 
For each particle, we average over a number of nearest neighbours 
given by Zi = 7ci/13, where ci is the observed coordination number 

defined before, and we round Zi to the nearest integer. The denomi-
nator 13 is chosen as the number of neighbours in a close-packed 
sample, and the numerator 7 is from the results of Fig. 2a.

Furthermore, we need one more improvement when we apply 
our method to a nominally binary sample. It usually happens that 
we know the mean radii a1 and a2 of the two subspecies, while the 
number ratio of two species is unknown, which means that a  is 
unknown. In this situation, we start with a reasonable guess for 

′a  to be used in equation 3. Then we compute the particle radii and 
obtain the double peak distribution, which depends on our guess 

′a  . The two peaks of the distribution will be at radii a1 and a2: these 
will differ from the true values. However, the difference will be the 
same for both, that is, ′ − = ′ − = ′ −a a a a a a1 1 2 2 . Adding this differ-
ence onto all of the data corrects the distributions and also identifies 
the true a .

Application to experimental data. We now apply our method to 
experimental data taken on fluorescent silica particles. The parti-
cles have a mean radius a = 0.752 µm and polydispersity p = 0.015, 
both determined by holographic microscopy37,38. Holographic 
microscopy is a powerful technique, which can measure individual 
particle sizes to high accuracy (uncertainty ∆a/a0.005). Using 
techniques similar to ref. 38, we determine the sizes of more than 
8,000 particles, (see Methods). From these images, we determine 
the radius of each particle, and show the distribution of radii in Fig. 
4c (blue squares). We additionally take 3D confocal microscopy 
movies of two high-volume fraction samples composed of the same 
silica particles and apply our method to determine the particle sizes 
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Figure 4 | Particle size distributions. (a) The distribution of the true radius 
(solid curve) and the estimated radius ai

(10)  (triangles) for a simulated 
nominally monodisperse sample with φ = 0.51 and polydispersity p = 0.07. 
(b) The distribution of the true radius (solid curve) and the estimated 
radius ai

(10)  (triangles) for a simulated nominally binary sample with 
φ = 0.51; see text for more details. (c) The radii distributions for a nominally 
monodisperse experimental suspension, for two volume fractions as 
indicated. The blue square symbols are a separate determination of the 
particle size distribution from holographic microscopy. Representative error 
bars are shown for P(a); see text for discussion. (d) The radii distributions 
for the nominally binary experimental suspension from ref. 11, for four 
volume fractions as indicated. Here, the solid curve is a fit to the sum 
of two Gaussians. With the size ratio (1:1.3) and the polydispersity of 
each species (p = 0.049 for the small species and p = 0.050 for the large 
species), the two subdistributions have substantial overlap.
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from more than 4,000 particles per sample. These results are plot-
ted in Fig. 4c (circles and triangles). To estimate the uncertainty 
of P(a), we take our list of a data and add additional Gaussian- 
distributed random noise to each value, with width corresponding 
to the uncertainty of a based on the technique (holography or our 
estimation technique). We then compute the new P(a): repeating 
this process 10,000 times gives us fluctuations for P(a) for each value 
of a, shown in the error bars for the three distributions plotted in 
Fig. 4c. The quantitative agreement between these results is strong 
evidence that our method works. Note that holographic microscopy 
works best with dilute samples, whereas our analysis works best 
with dense suspensions.

Separate evidence that our method works is shown in Fig. 4d. 
Here, we analyse previously published experimental data from  
ref. 11 (a nominally binary sample, composed of poly-methyl- 
methacrylate particles). Data from several different volume frac-
tions are shown. Each different volume fraction was a sample taken 
from the same stock jar and therefore should have the same size 
distribution, as we observe, confirming the results are robust over a 
range of volume fractions.

A strength of our algorithm is that it only depends on data from 
the centres of particles. It therefore will work well with core-shell 
particles (dyed cores and transparent shells), for which the full size 
of the particle is not optically apparent. It would also work with 
particles with inhomogeneous dye distributions, so long as their 
centres could be identified. However, one limitation is that homo-
geneously dyed particles that are close together have overlapping 
images that pulls their apparent centres closer together39. This may 
somewhat average out for a random close-packed sample (with 
neighbours on all sides), but for a gel sample it would be more prob-
lematic. Measures can be taken to avoid such errors39–41, and using 
core-shell particles minimizes the problems. In addition, time aver-
aging allows particles to explore different environments and these 
errors should cancel out over time for samples other than gels and  
close-packed samples.

A second limitation is that systematic and correlated errors 
can exist in the particle positions. For example, if the calibration 
(microns/pixel) is slightly incorrect for the z axis, then particles sep-
arated in z will have systematic errors in their separation. To mimic 
an incorrect z calibration, we reconsider the p = 0.06, φ = 0.51 data 
and multiply all the z coordinates of the simulation data by 0.98 
before we do the radius-estimation algorithm. We find that ∆a only 
slightly increases (from 0.013 to 0.015). An additional concern is that 
owing to optical limitations, particle positions are inherently more 
uncertain in z than in x and y (refs 2,6,7,10). For time averaging to  
be helpful in solving these systematic problem, it would require  
particles to rearrange significantly during the observation period. 
Such time averaging is impossible or difficult for random close-
packed samples, gels and glassy samples, and so such samples would 
be more prone to these types of systematic errors. On the other 
hand, having neighbours distributed in a spherically symmetric 
fashion around the central particle will help average out the errors 
to some extent.

A third limitation is that charged particles with a polydispersity of 
charge would have their apparent radii influenced by both their core 
size and their charge. Probably their estimated radii would depend 
on a combination of these effects. For example, the estimated radius 
might relate to the distance where the pairwise particle interaction 
energy is of magnitude kBT (ref.  42).

Discussion
We now demonstrate the utility of our algorithm by studying colloi-
dal crystal nucleation. The nucleation of crystals in a dense particle 
suspension depends sensitively on polydispersity23,27,28. We exam-
ine data of the φ = 0.46 sample from ref. 9, analysed at longer times 
to examine the crystallization process that was discarded from the 

analysis in ref. 9. These particles are slightly charged, shifting the 
freezing point to φfreeze≈0.38 and the melting point to φmelt≈0.42  
(ref. 13). In this data, we confirm that the crystal nucleus appears at the  
centre of our microscopic image: this is homogeneous nucleation, 
not heterogeneous nucleation near the wall.

At each time step, we calculate the number of ordered neigh-
bours No for each particle using standard techniques13,43 (see  
Methods). By convention, a crystalline particle has No≥8. At each 
time, we compute the number fraction of the sample that is crystal-
lized, X(t). Figure 5a shows X(t) as a function of both individual  
particle size and time, where darker colours correspond to larger 
values of X(t). Below t = 3,000 s, X < 0.2 for all a, and essentially 
all crystal clusters are below the critical size (~100 particles)13. At 
t = 3,000 s, a sufficiently large crystalline region appears and begins 
to grow. X increases first for particles with a close to the mean radius, 
and these particles continue to be the subpopulation that is the most 
crystallized at any given time. At longer times, the particles with a 
farther from a  gradually begin to crystallize.

We next consider an alternate way of thinking about the same 
data. Figure 5b shows the relationship between the sample-averaged  
X(t) (solid black curve), the polydispersity pX for all crystalline  
particles (blue circles), and the polydispersity pnX for all non- 
crystalline particles (green squares). X starts to increase at t = 3,000 s, 
and those particles that are crystalline at that time have pX~0.03, 
smaller than the bulk polydispersity p = 0.045. As the sample crys-
tallizes, we observe that both pX and pnX increase. The growth of pX 
indicates that the crystal, while nucleating in a fairly monodisperse 
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Figure 5 | Relationship between individual particle size ai and 
crystallization. (a) The contour plot of the fraction of crystalline particles X 
as a function of ai and time t. The contour lines are numbered by the value 
of X. The dashed line shows the mean radius a  . Particles with radii close 
to a  crystallize faster. (b) The fraction of the sample X that is crystalline as 
a function of time (solid black curve), along with the mean polydispersity of 
all crystalline particles (blue circles) and all non-crystalline particles (green 
squares). The grey dashed line corresponds to the bulk polydispersity 
p = 0.045. (c) The crystalline particles are shown at t = 20,000 s. (d) The 
non-crystalline particles are shown at t = 20,000 s. For (c,d), the colour 
indicates ai for each particle, where blue corresponds to smaller ai, light 
green corresponds to ai close to a  and red corresponds to larger ai.
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region, can grow by incorporating particles that are farther from 
the mean size. In the final state, the local polydispersity of the crys-
talline particles has nearly reached the mean polydispersity p. The 
growth of pnX indicates that those particles that are still outside the 
crystal are more likely to be those with unusual sizes.

The spatial distribution of particles at the end of the experiment 
is shown in Fig. 5c,d. Figure 5c shows the locations of the crystalline 
particles, while D shows the locations of the non-crystalline parti-
cles. Green particles have ai close to a  , and preferentially occupy 
the cores of the crystal regions.

Next, we examine the beginning of the crystal nucleation proc-
ess. While many particles are close to the mean size, only a few end 
up being the nucleation site. To understand which ones nucleate, 
we now focus on the particles close to the mean size: radii 1.175 µm  
 < ai < 1.185 µm. Among those particles, we define the nucleus parti-
cles as those that are crystalline particles at t = 5,000 s, the remainder 
are non-nucleus particles. We next define the local polydispersity 
pi(r) of particle i as

p a a ai j i i= ( ) /2〈 − 〉

where the angle brackets 〈〉 indicate an average over all particles j 
with centres within a distance r from particle i. Figure 6a,b show 
space-time plots of the mean value of pi(r) for the nucleus parti-
cles (Fig. 6a) and the non-nucleus particles (Fig. 6b). In all cases, 
pi(r) is lower close to the particles and increases with increasing r. 
However, notably the contours for low pi are at larger values of r for 
the nucleus particles (Fig. 6a): the region of low polydispersity is 
larger for these particles. After t≈3,000 s, the region of low pi slightly 
spreads to even larger values of r for the nucleus particles (Fig. 6a), 
while little change is seen for the non-nucleus particles (Fig. 6b). 
Simultaneously, we show the temporal change of No in Fig. 6c for 
the nucleus particles (solid black curve) and the non-nucleus par-
ticles (dashed grey curve). This confirms that the onset of crystal-
lization at t≈3,000 s coincides with the expansion of the low local 
polydispersity region seen in Fig. 6a. This is all evidence that crystal 
nuclei are formed from regions where the particles are all similar 
sizes. A conjecture is that nucleation rates are possibly sensitive to 
how well mixed the sample initially is: poorly mixed samples with 
regions of lower local polydispersity will crystallize faster.

The particles in this experiment are slightly charged and poten-
tially polydisperse in their charge. We therefore note that the effects 
we see are based on the estimated radius, which likely includes both 
the core size and the effect of charge: our results show that this esti-
mated radius has a role in nucleation. We cannot disentangle the 
two effects, but presumably our estimated radius—which relates to 
how closely particles approach each other—is similar to whatever 
effective radius is relevant for nucleation.

We have developed a general method to estimate the particle 
sizes in a dense particulate samples where the particle positions are 
known. This method can be applied to any cases where 3D particle 
positions can be found; while we have focused on colloidal samples, 
granular media are quite similar1,44. We have demonstrated the 
utility of our method by examining homogeneous colloidal crystal 
nucleation. While it has been known that nucleation is faster for 
more monodisperse samples, we find this is true on a quite local 
scale. Nucleation happens in regions that are locally more monodis-
perse, and crystal growth proceeds by preferentially incorporating 
particles close to the mean size.

Methods
Simulations. We simulate four particle suspension systems, which are RCP, 
colloidal gel, single-component suspension and a binary system. The polydis-
perse RCP sample is generated using the algorithm of ref. 45. For the three other 
cases, we perform 3D Monte Carlo simulations with hard spheres. Addition-
ally for gels, we wish to model colloid-polymer mixtures and so we use the 

(5)(5)

Asakura and Oosawa model36. This model leads to a pair interaction between 
two hard colloidal spheres in a solution of ideal polymers as U(r) =  for r < σij, 
U r k T r R r RB p ij G ij G( ) ( / ) [ ( ) ( ) ]= − − + + +p r s s12 3 23 2 3  for σij≤r < σij + 2RG, 
U(r) = 0 for r≥σij + 2RG, where σij = (σi + σj)/2, σi is the diameter of particle i, 
kB is the Boltzmann constant, T is temperature, ρp is the number density of 
polymers and RG is the polymer radius of gyration. We fix RG = 0.1s  and 
f p rp G pR= 4 /3 = 0.13  where s  is the mean diameter of the hard spheres. For  
our single-component and two-component hard-sphere suspensions, particles 
interact via U(r) =  for r < σij, otherwise U(r) = 0. We use 1,024 particles with  
the mean radius a   = 1 and variable polydispersity for all simulations.

Experiments. The silica particles are fluorescently dyed and are in a refractive  
index-matched mixture of water and DMSO (dimethyl sulphoxide, (CH3)2SO). 
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Figure 6 | Relationship between nucleation properties and the local 
polydispersity pi(r). (a) The contour plot of the mean pi(r) as a function 
of r and t, averaged over all particles that are crystalline at t = 5,000 s. 
The numbers on the contour lines represent the value of pi(r). (b) The 
contour plot of the mean pi(r) as a function of r and t, averaged over all 
particles that are non-crystalline at t = 5,000 s. The particles considered 
in (a) and (b) are only those with radii close to the mean radii; see text for 
details. (c) The number of ordered neighbours No as a function of time for 
those particles plotted in (a) (nucleus particles, solid curve) and (b) (non-
nucleus particles, dashed curve).
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The silica particles are imaged with a Leica confocal microscope, and their posi-
tions are tracked using standard techniques10,35. For the holographic microscopy 
of the silica particles, we illuminate the sample with a 445-nm Coherent Cube 
diode laser mounted above a Nikon Eclipse TE2000-U inverted microscope. The 
scattered light is collected by a ×1001.4 numerical aperture oil immersion objective 
(Nikon Plan Apo) and is relayed to a grayscale video camera (NEC TI-324A II) 
that records at 30 frames per second. Diluted samples are flowed through a glass 
microfluidic cell and each particle is imaged at least N = 10 times. The s.d. of an 
individual particle’s measured radius a from different images is 0.012 µm. The 
particle’s radius is estimated from the average a over the N images that the particle 
was seen in, and the uncertainty of that estimation is the s.d. divided by N  . The 
resulting uncertainty of the particle radius for an individual particle, for N≥10,  
is ∆a/a0.005.

The poly(methyl methacrylate) (PMMA) data come from a prior experiment11. 
This experiment used sterically stabilized PMMA particles that were imaged with  
a VisiTech confocal microscope and tracked using standard methods10,35. Each 
data set has more than 2,800 particles. A more detailed experimental discussion  
is in ref. 11.

The volume fraction numbers reported in our paper are given to two or three 
significant digits. The volume fractions are measured by direct counting of particles 
in a given volume21, and converting from the measured number density n to vol-
ume fraction φ using φ = nvP using the particle volume vP = (4/3)πa3. The particle 
radii were determined by holographic microscopy (for the silica particles) or by 
measuring the hydrodynamic radii from dilute suspensions (for the prior PMMA 
data). The uncertainty of φ with these methods is about 5%, that is, a number 
such as φ = 0.40 is uncertain by about 0.40×0.05 =  ± 0.02 (ref. 21). Note that this 
uncertainty is systematic, so for example the data Fig. 4d are correct relative to each 
other to within the third decimal place, but overall have a systematic uncertainty 
of  ± 5%. For example, they may all be 5% larger than the reported values. The same 
is true for the data of Fig. 4c, which come from different experiments and so have a  
different systematic error from those of Fig. 4d.

Order parameters for crystalline particles. We use previously developed 
order parameters to look for crystalline particles and ordered structure13,43,46. 
For each particle i, we find its nearest neighbours j and identify unit vectors r̂ij 
pointing to the neighbours. We then define a complex order parameter q̂lm  using 
q i Y rlm j

ci
lm ij( )= ( )=1Σ ˆ  where ci is the number of nearest neighbours of particle i and 

Ylm is a spherical harmonic function; we normalize this as q̂ q Nlm lm= /  where N is 
a normalization factor such that Σm lm lmq i q iˆ ˆ( ) ( ) = 1*  (ref. 13). We use l = 6. For each 
particle pair, we compute the complex inner product d q i q jm lm lm6 = Σ ˆ ( )ˆ ( )* . Two 
neighbouring particles are termed ‘ordered neighbors’ if d6 exceeds a threshold 
value of 0.5. For each particle, we focus on No, the number of ordered neighbours 
it has at a given time. No

i measures the amount of similarity of structure around 
neighbouring particles. No

i  = 0 corresponds to random structure around particle 
i, while a large value of No

i means that particle i and its neighbour particles have 
similar surroundings43. 
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