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Soft particle clogging in two-dimensional hoppers
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We study the outflow of soft particles through quasi-two-dimensional hoppers with both experiments and
simulations. The experiments utilize spheres made with hydrogel, silicone rubber, and glass. The hopper chamber
has an adjustable exit width and tilt angle (the latter to control the magnitude of gravitational forcing). Our
simulation mimics the experiments using purely two-dimensional soft particles with viscous interactions but
no friction. Results from both simulations and experiments demonstrate that clogging is easier for reduced
gravitational force or stiffer particles. For particles with low or no friction, the average number of particles
in a clogging arch depends only on the ratio between hopper exit width and the mean particle diameter. In
contrast, for the silicone rubber particles with larger frictional interactions, arches have more particles than the
low friction cases. Additionally, an analysis of the number of particles left in the hopper when clogging occurs
provides evidence for a hydrostatic pressure effect that is relevant for the clogging of soft particles, but less so
for the harder (glass) or frictional (silicone rubber) particles.
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I. INTRODUCTION

The hopper discharge of granular materials has been in-
tensively studied due to its practical importance to industries,
such as agriculture, architecture, and mining [1–6]. Hoppers
are containers with funnel-shaped bottoms where particles can
flow out. By adjusting the width of the hopper opening, the
flow rate can be controlled [5]. However, at small opening
widths, clogging can occur, in particular if the particles can
form an arch that spans the width of the opening [7]. This
typically happens at a critical opening width of about 3 to 6
particle diameters [1,3,5,8–11]. Even when the opening width
is greater than the critical size, the flow rate fluctuates due
to transient clogging events [12,13], affecting the ability to
smoothly dispense granular materials out of a hopper. In ev-
eryday life, the flow of granular materials has been applied to
the study of the movement of people during emergency evac-
uations [14–16]. There are already many prior studies on the
flow and clogging of hard particles; however, the outflow of
soft particles still lacks a comprehensive physical description.

Prior work showed the importance of softness to the clog-
ging process. Experiments showed that, due to soft particles’
ability to deform, clogging only occurred for much smaller
opening widthsfpared with results from the studies of hard
particles [17–19], which significantly changed the flow rate
[20]. Slightly above the critical opening size, there could be
long-lived transient clogs that eventually unclogged [13]. For
even larger opening sizes, it was found that the flow rate
and internal velocity fields differ for soft particles compared
to hard particles [13,21,22]. Simulations of soft frictionless
granular materials demonstrate that clogging is easier for
stiffer particles or with weaker gravitational forces [19]. Prior
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experimental studies of soft particles mostly focused on hy-
drogel particles [13,19–22], although one study also included
oil droplets [19] which, due to their easy ability to deform,
were even harder to clog than hydrogel particles.

In this paper, we study clogging in the outflow of a hop-
per using a quasi-two-dimensional experiment with granular
materials of varying softness, and simulations mimicking fric-
tionless soft particles. Our experiment uses glass particles,
silicone rubber particles, and hydrogel particles, as shown in
Fig. 1. The hopper can be tilted relative to gravity, allowing
us to adjust the driving force. The choices of particles and
tilt angles allow us to vary the particle effective stiffness by a
factor of 104. For the harder particles (glass, silicone rubber;
lower gravity) clogging is easier and occurs with larger open-
ing widths; for the softer hydrogel particles the opposite is
true. The simulation results agree well with the experimental
results. Both the experiment and simulations show that the
number of particles forming the arch is determined by the
ratio between the opening width and the particle diameter
regardless of the particle softness. The sole exception is for
the silicone rubber particles, which have a markedly higher
friction coefficient leading to larger arches. Finally, an ex-
amination of the number of particles in the hopper when a
clog occurs reveals that the hydrostatic pressure of the soft
particles causes clogging to be exponentially less likely when
the hopper is full. The exceptions are for the glass particles
and silicone rubber particles, suggesting hardness and friction
change the physics of soft particle clogging.

II. EXPERIMENTAL METHODS

The apparatus used in our experiment is the same as the one
described in our group’s prior work [19]; we reprise the key
details here. The hopper has two movable sidewall blocks at
34◦ angles measured from the horizontal, pictured in Fig. 1.
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FIG. 1. Photograph of different types of particles in a clogged
state, with the sample chamber fully vertical (maximum force of
gravity). (a) Clogging of small hydrogel particles, showing a three-
particle arch. The opening width is w = 14.3 mm = 1.81d in terms
of the mean particle diameter d = 7.9 mm. (b) Clogging of glass
spheres, showing a four-particle arch with w = 51.5 mm = 3.32d ,
d = 15.5 mm. (c) Clogging of silicone rubber particles, showing
a five-particle arch with w = 30.6 mm = 2.19d , d = 14.0 mm.
(d) Clogging of silicone rubber particles, showing a six-particle arch
with w = 39.9 mm = 2.85d .

Above and below the main hopper chamber there are two
identical storage chambers. To initialize the experiment, we
place 200 particles in the upper storage chamber. A bottom
metal plate inserted between the upper storage chamber and
the hopper holds these particles. To begin the experiment, we
rapidly remove the metal plate by hand, allowing the particles
to fall. Particles that fall through the hopper are collected
by the storage chamber below the hopper. The two storage
chambers are then swapped, moving the particles back to the
top position, readying for the next trial. If a clog occurs, the
sidewall blocks are moved to let those particles drain out.

TABLE I. The diameter d , modified Young’s modulus E∗, and
coefficient of sliding friction μ for each particle type. The large
hydrogel particles are made by swelling the dry particles in 0.01 M
NaCl, while the small hydrogel particles use 0.5 M NaCl. The di-
ameters are listed as mean ± standard deviation. The uncertainties
of E∗ and μ are based on the reproducibility of our measurements.
The exception is the uncertainty of E∗ for the glass particles, which
is based on differences in literature values.

Particle d (mm) E∗ (kPa) μ

large hydrogel 13.8 ± 0.6 54.0 ± 6.4 0.004 ± 0.002
small hydrogel 7.9 ± 0.2 60.4 ± 4.9 0.004 ± 0.002
silicone rubber 14.0 ± 0.1 5100 ± 100 0.4 ± 0.2
glass 15.5 ± 0.1 (8 ± 2) × 107 0.009 ± 0.002

To ensure a reproducible opening width between trials, the
hopper blocks are pushed against an inserted plastic spacer
with the desired opening width and then locked into place.
The entire apparatus is mounted on a horizontal axis, so that
we can vary the component of the gravitational force in the
plane of the hopper by setting the tilt angle θ relative to
the horizontal. In practice, we vary the component of gravity
in the hopper by a factor of 6. At the smallest tilt angles,
occasionally particles get stuck between the bottom of the
upper storage container and the top of the hopper, on the seam
between the two parts. Accordingly, we avoid tilt angles where
this problem occurs, which is the limiting factor on our ability
to adjust the gravitational force.

We use three types of particles with varying softness in
the clogging experiments: hydrogel particles, silicone rubber
particles, and glass particles. The physical properties of the
particles are given in Table I. The hydrogel particles are
a polyacrylamide gel [23]. When these hydrogel particles
are dry, they are spheres with diameters around 3 mm and
moderate polydispersity. We use two sieves to constrain the
dry particle diameter to be between 2.80 and 3.15 mm. We
then swell the hydrogel particles in salt water; by changing
the concentration of salt, we can control the final diame-
ter of the hydrogel particles. Salt water with concentration
0.01 mole/l swells the hydrogel particles to a mean diameter
of 13.8 mm, and a concentration of 0.5 mole/l results in a
mean diameter of 7.9 mm. Additionally, we use silicone rub-
ber spheres with diameters 14.0 mm [24], and glass spheres
with diameter 15.5 mm [25]. The silicone rubber, glass parti-
cles, and large hydrogel particles are used in sample chambers
with thickness 17.0 mm. For the small hydrogel particles we
adjust the thickness to 9.0 mm. Table I lists these diameters
along with their standard deviations.

To measure physical properties of our hydrogel and
silicone rubber particles, we use a TA Instruments AR2000
rheometer with a parallel-plate geometry. To measure the
Young’s modulus we compress individual spheres and mea-
sure the normal force. The resulting relation between the
compression force and the displacement is well fit by the
Hertzian force law, and provides us with the modified Young’s
modulus E∗ = E/(1 − ν2) in terms of the Poisson ratio ν and
Young’s modulus E . Later we will need E∗, so the data are
listed in Table I. The small and large hydrogel particles come
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from the same dry particles, so accordingly the larger elastic
modulus of the smaller particles (swelled in high concentra-
tion salt water) is due to the higher polymer concentration of
the smaller hydrogel particle. The glass particles are too stiff
to be measured in the rheometer, so the quoted modulus is an
estimate (from [26]); the main point is that the elastic modulus
of glass is several orders of magnitude larger than the other
particle types.

To measure the surface friction of the particles, we use
the technique described in our group’s prior work [19]. We
place a pair of particles symmetrically a distance R = 1 cm
from the rheometer axis. The particles are trapped in small
wells made from glue and paper to prevent the particles from
rolling. The parallel plate rheometer tool compresses the par-
ticles slightly with normal force N , and we then measure the
torque τ required to rotate the rheometer tool. The friction
coefficient is then calculated from μ = τ/2NR. The results
depend somewhat on the rotation speed [27], so we have
uncertainties of 50% listed in Table I for all but glass (where
the results vary less). The main point made in Table I is that
the silicone rubber particles have a friction coefficient about
50–100 times larger than the other particle types.

To look for clogging, we load the hopper with 200 parti-
cles and allow them to flow through the hopper with a fixed
opening width. We record whether the experiment clogs. If a
clog occurs, we wait at least a minute to confirm the particles
are stationary; in practice any transient clogs last only a few
seconds, in agreement with our group’s prior experiments [19]
and observations by Harth et al. [13]. Clogging probabilities
are measured by repeating each condition at least 20 times.

III. SIMULATION METHODS

In addition to the experiments, we also do simulations
using the two-dimensional Durian bubble model [28,29]
as modified in our group’s prior work [19]. This model as-
sumes strong viscous forces such that the velocity-dependent
viscous forces are balanced by all other forces, and thus at
each time step a differential equation is solved for the velocity
rather than the acceleration. This differential equation for each
particle i is∑

j

[ �F contact
i j + �F visc

i j ( �vi, �v j )
] + �F wall

i + �F grav
i + �F drag

i ( �vi ) = 0.

(1)

Each soft particle has a radius Ri and the contact force is zero
if two particles do not overlap. For overlapping particles i and
j, the repulsive contact force is given by

�F contact
i j = F0

[
1

|�ri − �r j | − 1

|Ri + Rj |
]
�ri j, (2)

based on their positions �r, defining their separation as �ri j =
�r j − �ri, and requiring |�ri j | < (Ri + Rj ) for overlaps. The vis-
cous force is experienced by overlapping particles moving at
different velocities and is given by �F visc

i j = b(�v j − �vi ). The
wall force is a contact force experienced by droplets which
overlap the wall, treating the wall as a particle with Rj = 0
in Eq. (2). The gravitational force is F grav

i = −ρgR2
i ŷ, pro-

portional to the particle area. This model was inspired by

experiments with oil droplets compressed between two par-
allel plates [19], so the final force is a drag force coming from
these plates, F drag

i = −cR2
i �vi. We set F0 = b = c = ρ = 1 and

vary g to influence the importance of particle softness. The
mean droplet radius 〈R〉 is set to be 1. The unit of time
is b〈R〉/F0, which is the timescale for two droplets to push
apart, limited by interdroplet viscous interactions. With these
parameter choices, the free-fall velocity of an isolated particle
is g. See Ref. [19] for further discussion about these parameter
choices.

The specific geometry is matched to the experiment, with a
hopper wedge angle of 34◦. We simulate 800 particles with a
polydispersity of 0.1 (the polydispersity is the standard devi-
ation of Ri divided by 〈Ri〉 = 1). The particles are initialized
in random positions above the hopper exit, and then allowed
to fall toward the exit. Equation (1) is computed using the
fourth-order Runge-Kutta algorithm with a time step of 0.1,
except for the simulations with g = 10−4 where a time step
of 1.0 is used. In some cases, the simulation ends with all
of the particles falling out of the hopper, defining a situation
without a clog. In other cases, the simulation is ended when
the maximum speed of all particles in the hopper falls below
10−10, defining a clog. In practice, once the maximum velocity
of the particles in the hopper is below 10−6, their velocities
decay exponentially toward zero; the particles do not unclog
[19]. Stated another way, we do occasionally observe long
transient clogs where the particles have slight motions and
eventually unclog, and these transients always have a max-
imum velocity of at least one particle above 10−6, allowing
for the rearrangements necessary to unclog and return to a
flowing state.

IV. RESULTS

A. Clogging probability

Our first goal is to investigate the clogging probability. The
experimental data are shown in Fig. 2. For the experiment,
we repeat each experimental condition 20 times and compute
the clogging probability Pclog from the fraction of times that
we observe clogging. We go through the same process for
different types of particles, different values of opening width
w, and different hopper tilt angles θ . Each set of symbols
illustrates that Pclog decreases as we enlarge the hopper open-
ing width for a fixed gravitational force. Overall, these results
are consistent with our group’s prior experimental work with
slightly different hydrogel particles [19].

In Fig. 2 each family of symbol type indicates one type
of particles. The influence of gravity is apparent: clogging is
easier for reduced gravity, as signified by the curves shifting
to the right in Fig. 2 as the colors vary from dark pur-
ple (maximal gravity) to blue to red (minimal gravity). For
large hydrogel particles, as gravity decreases by a factor of
3, the location where Pclog = 1/2 shifts from w/d ≈ 1.4 to
2.1. Different types of particles behave differently in the
clogging experiment: harder particles are more likely to clog,
also signified by the curves shifting to the right. With a tilt
angle θ = 50◦, the large hydrogel particles have Pclog ≈ 1/2
at w/d ≈ 1.8, the small hydrogel particles have Pclog ≈ 1/2
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FIG. 2. Experimental probability of clogging as a function of
w/d , the ratio of the hopper exit width w to the droplet diameter
d . Data for different types of particles with the influence of gravity
varied by setting different tilt angles. Different symbols represent
different types of particles as indicated in the legend. The different
colors stand for different tilt angles θ : 90◦ (dark purple, largest
influence of gravity), 50◦ (dark blue), 35◦ (light blue), 20◦ (green),
and 10◦ (red, smallest influence of gravity). The lines are sigmoidal
fits to the large hydrogel data and the glass data: Pclog(w/d ) =
{1 + exp[(w/d − a)/s]}−1.

at w/d ≈ 2.1, and both the silicone rubber particles and glass
particles have Pclog ≈ 1/2 at w/d ≈ 3.1.

Figure 3(a) shows a similar trend from the simulation data.
Our group’s prior work showed that the relevant control pa-
rameter is g/F0, the force of gravity normalized by the spring
constant acting between the soft particles in the simulation
[19]; here we keep F0 = 1. As gravity is decreased, the parti-
cles effectively become harder and it becomes easier to clog;
Pclog = 1/2 moves to larger values of w/d . A different view
of simulation data telling the same story is shown in Fig. 3(b),
where now the symbols correspond to fixed values of w/d
and Pclog decreases as g/F0 is increased. Narrower hoppers
(smaller w/d) are easier to clog and thus require higher values
of g/F0 to reduce Pclog.

We wish to quantify and compare the different data sets
to understand the influence of particle softness on clogging.
Following Ref. [19], we fit the Pclog(w/d ) curves to sigmoidal
fits and extract the opening width w/d for which Pclog = 1/2;
this characterizes the ability of the system to clog. To quantify
softness, we use the magnitude of deformation δ a particle has
due to its weight, nondimensionalized by the particle diameter
d . The experimental deformation δ is determined by balancing
the weight of one particle with the Hertz contact force law,
using the E∗ modulus data in Table I. For the simulation
data, balancing the gravitational force on a particle with the
contact force against a hypothetical horizontal wall leads to
δ/d = 2g/F0.

Figure 4(a) shows the parameter δ/d works fairly well
to collapse all of our w/d (Pclog = 1/2) data, including the
laboratory data with hydrogel particles from our group’s prior
work [19]. The addition of the glass data extends the dynamic
range of δ/d by two orders of magnitude over the prior work.
Considering the differences between the simulation and the

FIG. 3. Clogging probability from the simulation. (a) Clogging
probability as a function of w/d for fixed values of the driving
force g/F0. From left to right, g/F0 = 10−2, 3 × 10−3, 10−3, 3 ×
10−4, 10−4. The lines are sigmoid fits as in Fig. 2; the fit
parameters are plotted in Fig. 4. (b) Clogging probability as
a function of g/F0 for fixed values of w/d . From left to
right, w/d = 2.50, 2.25, 2.00, 1.75, and 1.40. The lines are sig-
moid fits to the function P = {1 + exp[( ln(g/F0 ) − ln(a))/s]}−1,
with centers g/F0 = a having values 1.1 × 10−3, 2.8 × 10−3, 6.7 ×
10−3, 1.2 × 10−2, and 1.8 × 10−2 from left to right, and widths
s = 0.41, 0.29, 0.28, 0.25, and 0.19 respectively.

experiment, the experimental results are in great agreement
with the simulation results, suggesting that δ/d is a good
measurement of the importance of softness. As δ/d gets larger
(particles become softer), the hopper opening width needs to
become smaller to have a 0.5 clogging probability. The one
unexpected result is that the glass spheres, while being sig-
nificantly harder and thus at much smaller values of δ/d , still
show some slight dependence on δ/d , although nonetheless
the glass sphere data are consistent with the overall shape
of the curve. The slight variability of the glass sphere data
may be indicating other effects not accounted for in δ/d .
We suspect that the biggest effect is that the larger mass of
the glass particles causes the apparatus to vibrate when the
particles collide with the walls, and the vibrations may disrupt
some arches. This would be reduced when the tilt angle is
reduced (and thus the particles fall slower). Note that there
is one difference between the experiments and simulations:
the experiments use 200 particles, whereas the simulations
use 800 particles. More particles gives more chances to clog
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FIG. 4. Sigmoidal fit parameters. (a) Centers of sigmoidal fits for
different types of particles under varying gravity, with the symbols
corresponding to distinct experiments or simulations as indicated in
the legend. (b) Width s of sigmoidal fits. The Hong et al. data are
from Ref. [19] and are from a different set of hydrogel particles.

[30–33]. Based on our simulation data, changing the number
of particles to 200 would decrease w/d by 0.25 or less in
Fig. 4(a) (for the circles), which would not qualitatively affect
the agreement between experiment and simulation data.

Figure 4(b) shows the width of the sigmoidal fit s as a func-
tion of δ/d; here the data do not collapse, although they are
of somewhat similar magnitude. Smaller values of s indicate
stronger dependence of Pclog on w/d . For example, to change
Pclog from 0.88 to 0.12, w/d needs to increase by 4s according
to the sigmoidal fit. All three hydrogel data sets have similar
values of s, suggesting that the particle type is more influential
than δ/d when it comes to determining s.

B. Number of particles remaining in hopper

We wish to understand how many particles remain in the
hopper when it clogs. A simple hypothesis is that, for soft
particles, the weight of the particles above a clogging arch
matters. If many particles are still in the hopper, then the
arch must bear their weight, especially in the simulation for
which there is no Janssen effect [34]. The Janssen effect
is a reduction of pressure at the bottom of a container of
particles due to friction [8,35], and our simulations do not
have friction. Likewise, recent experiments studying hydrogel
particles measured the pressure at the bottom of the hopper
and confirmed it depended on how many particles were in the
hopper [22]. Thus, we hypothesize that clogging should be
less likely when the hopper is full of particles, and more likely
when the hopper has fewer particles. This is confirmed by the
data, shown in Fig. 5(a). Here we measure the probability
of a clog during the next 50 particles flowing out of the
hopper, conditional on not having yet clogged. For example,
all the simulations start with N = 800 particles. For Fig. 5(a)

FIG. 5. (a) Hazard rate: probability of clogging as the next 50
droplets flow out, as a function of the number of particles N left in
the hopper. The lines are the best fit to the Gompertz hazard rate
(integrated over the next 50 droplets). For w/d = 1.8, 1.6, and 1.25,
the data are taken from simulation runs with 1454, 1697, and 1579
trials respectively. For these data g/F0 = 10−2; this matches the blue
diamonds in Figs. 3(a) and 6(a). (b) Probability of clogging with N
particles left in the hopper. The lines are the best fit to the Gompertz
distribution. The symbols at the left side of the plot indicate the
probability the system does not clog (divided by 50 for comparison
to the probability distribution); note that the w/d = 1.25 data always
clog in the simulation (for 1579 runs) so do not have a symbol.
The horizontal segments for N < 0 indicate the expected probability
that the system does not clog, based on the Gompertz distribu-
tion. The fit parameters are w/d = 1.25: h0 = 0.040 ± 0.006, b =
0.0055 ± 0.0003; w/d = 1.6: h0 = 0.014 ± 0.001, b = 0.0067 ±
0.0003; w/d = 1.8: h0 = 0.0073 ± 0.0008, b = 0.0095 ± 0.0007.

at N = 600, we are considering all the simulations which did
not clog with more than 600 particles, and asking what is the
probability that this subset of simulations has a clogging event
before reaching N = 550 particles in the hopper. This proba-
bility rises as the hopper drains (as N decreases), confirming
the hypothesis. The different data sets correspond to different
values of w/d , with clogging probability larger for the data
with smaller w/d . To measure the small probabilities, each
data set in Fig. 5(a) is based on more than 1000 simulations.

The probability measured in Fig. 5(a) is related to the
“hazard rate,” the rate of clogging events expected per unit
particle exiting the hopper. Note that unlike probability, the
hazard rate is indeed a rate and can be above 1, indicat-
ing an extreme likelihood of observing a clog, albeit with a
small nonzero chance of not observing a clog. In contrast,
we are focusing on the measured probability, bounded by 1,
which behaves conceptually like the hazard rate when P � 1.
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Figure 5(a) is a semilogarithmic plot showing that the hazard
rate rises exponentially as the hopper drains. This suggests
that the probability distribution of N , the number of particles
left in the hopper when it clogs, should follow the Gompertz
distribution: the probability distribution corresponding to an
exponentially growing hazard rate. In particular, consider n =
800 − N : the number of droplets that have flowed out. If
the hazard rate is given by h(n) = ηb exp(bn) then P(n) is
given by

P(n) = bη exp(η + bn) exp(−ηebn), (3)

which is valid for n, b, η � 0. The cumulative distribution
function is given by

C(n) = 1 − exp[−η(ebn − 1)]; (4)

the probability of finding a clog is Pclog = C(n = 800). To
make more physical sense of the fitting parameters, we define

h0 = ηb exp(800b) (5)

so that the hazard rate can be written as

h(N ) = h0 exp(−bN ), (6)

where h0 has the meaning of the hazard rate as N → 0 (as the
hopper empties). The parameter b expresses the rapidity of the
growth of the hazard rate as the hopper drains.

Figure 5(b) shows the measured probability distribution
functions P(N ) for the number of particles left in the
hopper, and the curved lines show the Gompertz distribution
fits to the data (using maximum likelihood) [36]. The ex-
cellent agreement shows that the data are well described by
the Gompertz distribution. The Gompertz distribution fit also
predicts the probability that the system does not clog [which is
1 − C(n = 800) from Eq. (4)]. The symbols at the left side of
Fig. 5(b) indicate the observed clogging probability, and the
horizontal line segments intersecting the symbols show the
predicted clogging probability from the Gompertz distribu-
tion fit. Likewise, the probability of clogging during the next
50 droplets exiting shown in Fig. 5(a) (symbols) is well fit by
the prediction of this quantity from the Gompertz distribution
fit (lines).

The influence of w/d and g can be understood by the
Gompertz fitting parameters b and h0, shown in Fig. 6. b
stays fairly small, O(10−3–10−2), consistent with needing
O(102–103) particles to flow out for significant increases in
the hazard rate. For the simulations with smaller values of
g/F0, the hazard rate does not measurably increase as the hop-
per drains; it would require significantly more data to detect
the slight increase. Accordingly, b ≈ 0 within our uncertainty
and those data are not plotted in Fig. 6(a) for g/F0 < 10−3.
In Fig. 6(b), h0 decreases dramatically as w/d increases, indi-
cating that the system becomes increasingly unlikely to clog
even as N → 0. Note that the error bars in Fig. 6 are largest
when Pclog → 1 or → 0, for which there is less variability in
the observations of N and thus fewer constraints on the fitting.

A complementary view of the simulation data is given in
Fig. 7, where each symbol type corresponds to a fixed value
of w/d , and the horizontal axis shows the dependence on
g; the corresponding clogging probability data are shown in
Fig. 3(b). If all that mattered for the hazard rate (at fixed
w/d) is the weight of the pile above for a given N , then it

FIG. 6. (a) Gompertz distribution fitting parameter b and
(b) Gompertz distribution fitting parameter h0, as a function of
opening width w/d . The data are from the simulation and different
symbols and colors correspond to different fixed values of the driving
force g/F0. From left to right, g/F0 = 10−2, 3 × 10−3, 10−3, 3 ×
10−4, 10−4. In (a), data are not shown for the two smallest values
of g/F0 as b is consistent with zero for those data; see the text for a
discussion. Representative error bars are drawn for three of the data
sets, and represent 90% confidence intervals. The symbols are the
same in both panels and match the symbols of Fig. 3(a). The short
vertical lines in (b) indicate the value of w/d for each data set at
which Pclog = 1/2, based on the sigmoid fitting shown in Fig. 3(a).

would make sense that b ∼ g; see Eq. (6), noting the weight
is ∼Ng. The prediction b = g is the black curve drawn in
Fig. 7(b), showing rough qualitative agreement for all of the
data, although underestimating the results for large w/d (red
symbols on left side of graph) and overestimating for small
w/d (purple symbols on right side of graph). This predicts
that b is constant when considering data at constant g, whereas
Fig. 6(a) show that b varies by about a factor of 3 at fixed g/F0

and varying w/d , further evidence that b ∼ g is only roughly
true. The data of Fig. 7(b) show that h0 decreases roughly
as a power law with g/F0. Fitting h0 ∼ g−α , the data give
α = 1.0 ± 0.5; a line with slope −1 is shown for comparison
in Fig. 7(b).

The limit g → 0 is important in that it represents perfectly
hard particles [37]. Our group’s prior work suggested that
the data of Fig. 4(a) should reach an asymptote for small
g, although as noted above the glass particles data suggest
that there is still some additional dependence on the forcing,
perhaps due to vibrational effects. The Gompertz distribution
fit parameter b is the “rate of change of the hazard rate” [recall
the hazard rate is given by h(n) = ηb exp(bn)]. Thinking just
of the simulation data, Fig. 7(b) suggests that if b ∼ g, the hard
particle limit is b → 0 (holding the product ηb constant as the
limit is taken), signifying that the hazard rate is independent
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FIG. 7. (a) Gompertz distribution fitting parameter b. The black
line is the curve b = g. (b) Gompertz distribution fitting parameter
h0. The error bars represent 90% confidence intervals. The black
line has a slope of −1 for comparison. In both panels, the data
are from the simulation and are plotted as a function of g/F0, for
fixed values of the opening width w/d . From left to right, w/d =
2.50, 2.25, 2.00, 1.75, and 1.40. The symbols are the same in both
panels and match the symbols of Fig. 3(b). The short vertical bars at
the bottom of (b) indicate the value of g/F0 for each data set at which
Pclog = 1/2, based on the sigmoid fitting shown in Fig. 3(b).

of the number of particles in the hopper. This certainly seems
to be the case for the classic clogging of hard particles, for
which the output flux is independent of the number of particles
in the hopper [5,10,38]. For the fit parameter h0, assuming
b = 0 for hard particles means that h0 is the constant hazard
rate for clogging, which should not depend on g for hard
particles. This is for example consistent with an experiment
that used a centrifuge to vary g, finding no dependence on g
[39], although Ref. [19] pointed out that those particles were
not infinitely hard but rather had δ/d ≈ 10−6.

To compare to the experiment, when the experiment clogs
we measure the number of particles remaining in the hopper.
For the experiment, this is not an exact count but rather an
approximation based on image analysis. Ideally we would
wish to use image analysis to directly identify and count the
particles. However, given that many of the experiments use
soft particles which are deformed and closely touching, this
sort of image analysis proves problematic. Instead, when the
hopper clogs, we determine the boundary of the region of
the image containing particles in the hopper, and then measure
the area contained within that region. To calibrate this we
took ten photographs with exactly 200 particles in the hopper
for the same imaging conditions as the experiment (same
particle type, same tilt angle, same lighting conditions) and
measure the area those 200 particles occupy. This then gives

FIG. 8. Histograms of probability of clogging with N particles
left in the hopper for (a) small hydrogel particles (w/d = 2.03),
(b) silicone rubber particles (w/d = 3.03), and (c) glass particles
(w/d = 2.91). All data are taken at tilt angle θ = 50◦. The solid
black lines are the best fit to the Gompertz distribution; note that
this is a reasonable fit in (a) and a less reasonable fit in (b) and
(c), showing that the latter data are not consistent with a Gompertz
distribution. The symbols at the left side of the plot indicate the
probability the system does not clog (divided by 20 for compar-
ison to the probability distribution). The horizontal segments for
N < 0 indicate the expected probability that the system does not
clog, based on the Gompertz distribution. The fitting parameters
are (a) h0 = 0.011 ± 0.004, b = 0.009 ± 0.003; (b) h0 = 0.007 ±
0.1, b ≈ 0; (c) h0 = 0.006 ± 0.1, b ≈ 0.

us the mean area per particle. For the experimental data of
interest, our uncertainty in the number of particles remaining
in the hopper is ±10 from this method; as will be seen, the
results do not depend sensitively on this uncertainty. We used
this method to estimate the number N of particles left in
the hopper when samples clogged, using 300 trials for three
different particle types, and w/d such that Pclog ≈ 0.7 so that
a large number of clogging events would be observed.

The experimental data are plotted in Fig. 8, along with
the best fit to the Gompertz distribution. The hydrogel data
are reasonably well fit; the silicone rubber and glass data
are less well fit. For the latter two cases, the fit significantly
underpredicts the probability of not clogging. Additionally,
for a sample that does not clog 30% of the time, one expects
that when clogging occurs it should more often occur with
fewer particles in the hopper. That is the argument given above
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for the simulation data, that when the hopper drains out the
pressure decreases and thus it is easier to form an arch that can
support the weight of the remaining particles. However, for
the silicone rubber particles and the glass particles, it appears
that it is most likely for the experiment to clog near the start
of the experiment; and the more particles that have flowed out,
the less likely it is to clog. We can speculate as to the causes.
First, the silicone rubber particles have more friction, whereas
the glass particles are significantly harder; both of these may
frustrate the argument about pressure making a difference to
the clogging arch formation. Second, the particles also are
more massive, and it may be that as they fall though the hopper
they add extra vibrations to the apparatus. Vibrations are well
known to destabilize clogging arches [12]. Perhaps it is easier
for an arch to form before the apparatus starts shaking too
much, and harder after particles are flowing out in significant
quantity. In any case, we note that by comparison the hydrogel
data agree reasonably well with the Gompertz distribution
fit. It is further interesting to note that, despite the imperfect
Gompertz distribution fit, nonetheless the silicone rubber and
glass particles fit well on our clogging plot in Fig. 4(a).

To measure the quality of the Gompertz distribution fits
(for both simulation and experimental data) we use the
Kolmogorov-Smirnov (K-S) test [40]. This test constructs the
observed cumulative distribution function Cobs(n) and com-
pares it to the predicted C(n) from Eq. (4). The K-S statistic
is D = max(|Cobs(n) − C(n)|); smaller is better, although this
depends on how much data one has. For the three simulations
with more than 1000 trials (Fig. 5 data), D < 0.028 and the
probability of this being a good fit is relatively high (P =
0.28–0.86) [40]. For the other simulations with 100 trials, we
find D ≈ 0.01–0.10 and generally the probability of a good fit
remains high (P = 0.13–0.99). For the hydrogel particles D =
0.07, P = 0.28; for silicone rubber, D = 0.11, P = 0.012;
and for glass, D = 0.08, P = 0.11. While the hydrogel fit is
not as good as one might wish, it is better than the rubber
and glass data, in agreement with the qualitative behavior of
Fig. 8. As a reminder, the fitting is done with the maximum
likelihood method which does not inherently have a quality of
fit measure, and thus is not optimizing the probability based
on the K-S statistic.

C. Arch size

When a clogging event occurs, we count the number of
particles forming the arch. We then average this over all
clogging events for a given condition. The mean arch size
simulation results are shown in Fig 9(a); different symbols and
colors indicate different values of the gravitational driving g.
The excellent collapse of the data shows that the average arch
size solely depends on the exit width w/d independent of the
magnitude of g. The smallest arch has one particle, and this
is only seen for small values of w/d < 1.0. As w/d increases
to 1.5, the average arch size increases to 3. There is a plateau
for 1.5 � w/d � 2.3 where the average arch size is constant
at 3. This plateau was also seen in prior experimental data
with hard particles [41], although in that work it was more
pronounced when the hopper wedge angle was steeper than
our moderate 34◦ angle. At higher values of w/d there is a
smaller plateau with arch size equal to 4, and then a bit of

FIG. 9. Average arch size as a function of w/d , the ratio of the
hopper exit width w to the droplet diameter d . (a) Data from the
simulation. Different values of gravitational driving are indicated by
the different symbols and colors; from left to right, g/F0 = 0.03,
0.01, 0.003, 0.001, 0.0003, and 0.0001. The symbol shape and color
matches those shown in Fig. 3(a). (b) The line reprises the simulation
data from (a). The symbols are the experimental data using different
types of particles under the influence of different values of gravity.
The symbols are the same as Fig. 4; in particular, the green squares
that are outliers correspond to the silicone rubber particles, which
have a significantly higher coefficient of static friction.

data with the mean arch size rising to 5 at the lowest value of
g (g = 10−4) and w/d � 3.5.

To compare the experiment and simulation, the simulation
data are replotted in Fig. 9(b) as the line, and the exper-
imental results are plotted with symbols [corresponding to
the legend in Fig. 4(a)]. The experimental results for the
hydrogel particles (blue triangles) and glass particles (purple
diamonds) agree with the simulation result supporting that the
arch size is affected by the opening width and is independent
of the magnitude of gravity. This strongly suggests that for
these particles—ranging from quite soft to quite hard, more
than five orders of magnitude in δ/d—the clogging arch is
solely determined by geometry. In contrast, the results for
silicone rubber particles (green squares) deviate significantly
from the other results: for a given opening width, the av-
erage arch size will be larger than that for simulation and
the glass particles. We attribute the difference between the
silicone rubber particles and the other data to be due to the
silicone rubber particles’ large coefficient of sliding friction.
The sliding friction for silicone rubber particles is 0.4 ± 0.2,
while the sliding friction for glass particles is 0.009 ± 0.002,
and the simulation has no friction. Indeed, the arch shown
in Fig. 1(d) has one particle that is clearly held in place by
friction. While this is an uncommon result, this clear frictional
effect is observed several times in our experiments with the
silicone rubber particles (and never with any other particles).
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V. CONCLUSIONS

Work in recent years has shown that the clogging of
soft particles is qualitatively different than hard particles
[13,19–22]. We extend this prior work with two new types
of particles, silicone rubber and glass, showing that there is
a relatively continuous transition from the softest particles to
the hardest [Fig. 4(a)]. The agreement between hydrogel data,
silicone rubber data, glass data, and simulation data—with
no free fitting parameters—is strong evidence for universal
behavior of soft particle clogging. This is further supported
by examining the mean arch size, which is a function of only
w/d (exit opening width w divided by the particle diameter
d). The caveats are that this is not true for the silicone rubber
particles for which friction is nearly two orders of magnitude
higher; and the mean arch size is also known to depend on
the hopper wedge angles [41]. We also analyze the number
of particles left in the hopper, further finding a difference be-
tween the silicone rubber and glass particles, as compared to
the simulation and hydrogel particles. For silicone rubber and
glass particles, if they clog, it is slightly more likely to do so
near the start of the experiment. In contrast, for the hydrogel
and simulated particles, they are more likely to clog near the
end of the experiment, which serves as strong evidence that
the hydrostatic pressure of the particles in the hopper [22]
breaks arches and prevents clogging.

Our work shows that for soft hydrogel particles and simu-
lated soft particles, the number of particles left in the hopper
when a clog occurs is well fit by the Gompertz distribution.
This distribution applies when the clogging “hazard rate” rises
exponentially as the hopper drains. The direct implication is

that the hydrostatic pressure of the soft particles influences
clogging: that it is harder to form a clogging arch with many
particles in the hopper as the hydrostatic pressure causes the
soft particles in the arch to deform and break the arch. A sub-
tler implication of the Gompertz distribution fit is that there is
some chance of the hopper clogging even when the hopper is
full of particles, albeit that the chance is exponentially small.
This further suggests that even with large hopper openings
w/d there is still some chance of clogging, consistent with
prior observations of clogging that suggested that there is no
critical exit size for causing clogging; rather, clogging be-
comes exponentially unlikely as the opening size is increased
[30,31,38]. Finally, the Gompertz distribution fit also implies
that in the opposite limit of a small opening size there may
nonetheless be some finite probability that the hopper does not
clog. It seems plausible that there is some limit on this, that for
opening widths smaller than the particle size and sufficiently
stiff particles, the system will always clog. Nonetheless, the
results imply that the ability to completely flow out may
persist to surprisingly narrow exit openings, even if the chance
to not clog becomes exponentially rare.
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