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Cooperative behavior of biased probes in crowded
interacting systems†

Oleg A. Vasilyev, ab Olivier Bénichou,c Carlos Mejı́a-Monasterio,d

Eric R. Weeks e and Gleb Oshanin *c

We study, via extensive numerical simulations, dynamics of a crowded mixture of mutually interacting

(with a short-range repulsive potential) colloidal particles immersed in a suspending solvent, acting as a

heat bath. The mixture consists of a majority component – neutrally buoyant colloids subject to internal

stimuli only, and a minority component – biased probes (BPs) also subject to a constant force. In such a

system each of the BPs alters the distribution of the colloidal particles in its vicinity, driving their spatial

distribution out of equilibrium. This induces effective long-range interactions and multi-tag correlations

between the BPs, mediated by an out-of-equilibrium majority component, and prompts the BPs to

move collectively assembling in clusters. We analyse the size-distribution of the self-assembling clusters

in the steady-state, their specific force–velocity relations and also properties of the effective interactions

emerging between the BPs.

1 Introduction

Situations in which a microscopic probe is pulled by an external
force through a quiescent medium composed of other micro-
scopic particles are rather common.1–11 For a theorist, this is a
natural framework for testing the Einstein–Stokes relation,
fluctuation–dissipation theorems and force–velocity relations
in the linear response regime and beyond.1–4 Viewed from
a different perspective, in such a model system one faces a
non-trivial non-linear velocity-selection problem: here, the pro-
pagation velocity of the probe in the steady-state results from
an intricate interplay between the jamming produced ongoingly
by the probe and the diffusive smoothening of the inhomogeneity
created in the spatial distribution of the particles. In some cases,
the resulting velocity even can be a non-monotonic function of the
force such that the differential mobility can become negative.5–7

In experiments, these settings appear in the so-called constant
force active micro-rheology (CF AMR), when a magnetic probe is
manipulated externally and is moved through a medium by a

magnetic field.12 This experimental technique has been success-
fully applied for the analysis of the micro-rheological properties
of systems in which either the materials cannot be produced in
bulk quantities, or local rheological properties are strongly
inhomogeneous, as it happens, e.g., living cells,13 glasses14,15

or granular media.16,17 Different aspects of AMR have been
extensively reviewed.18,19

Systems often studied by CF AMR are mixtures of colloidal
particles (CPs).18–22 Two types of cooperative behaviour emerge
in such media: (a) between the biased probe (BP) and the CPs,
and (b) between the BPs themselves, if more than one BP is
present.

In absence of the BPs, the CPs are subject to the interactions
between themselves and to internal stimuli, due to interactions
with the solvent molecules. In consequence, the CPs are in
thermal equilibrium with the solvent and are homogeneously
distributed in space. A single BP alters the environment, driving
the entire colloidal suspension out of equilibrium: the CPs spatial
distribution attains a steady-state form around a steadily moving
BP, characterised by asymmetric density profiles – a dense, traffic
jam-like region in front of the BP, which enhances effectively the
friction coefficient and makes it dependent on the force, density,
diffusion coefficient of the CPs, and a pronounced wake depleted
by the CPs which is formed past the BP. These wakes have been
studied in detail for lattice gas models,23–31 in various continuous-
space settings32–37 and also seen in granular media16 and colloidal
experiments.38–40

Lattice gas modelling suggests that the density in the traffic
jam-like region in front of the BP approaches its unperturbed
value as an exponential function of the distance. In contrast, in
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unbounded systems of spatial dimension d, the CPs density
variation in the wake of the BP as a function of the distance is
described, in the frame of reference moving with the BP, by a
power-law dependence with universal exponents24–29 3/2 and 2
for d = 2 and d = 3, respectively. In systems which are bounded
in the direction perpendicular to the direction of the force (e.g.,
in two-dimensional stripes or in three-dimensional capillaries)
the power-law decay exists only as an intermediate asymptotic
regime, which is then followed by an exponential function
of the distance.30,31 In confined single files, i.e., for d = 1,
the density of the CPs past the BP does not attain a steady-
state form, but the depleted region rather grows in size

indefinitely,23 in proportion to
ffiffi
t
p

, t being time.
Appearance of such inhomogeneous density profiles around

a steadily moving BP is a manifestation of the entrainment
phenomenon (known very well for macroscopic objects) on a
microscopic, molecular scale. For d 4 1, the profiles attain a
stationary form meaning that the entrainment is partial, in the
sense that upon an encounter with the BP the CPs are tempora-
rily involved in a directed motion and travel alongside the BP
for some random time, leaving it afterwards and being replaced
by other CPs so that the total amount of the entrained CPs stays
constant, on average, in time. In contrast, in single-files in
which the mean displacement of the BP grows in proportion toffiffi
t
p 23,41,42 and the profiles do not attain a stationary form,
entrainment is complete, such that a single BP ultimately
involves in a directed motion all the CPs present in the system.
This is rather evident for the CPs appearing in front of the BP
which form a growing in size traffic jam, and is less evident for
the CPs which are behind the BP. Here, the point is that the CPs
behind the BP exert a pressure on the right-most CP (closest to
the BP) and as soon as the BP moves away leaving a void space
behind it, the right-most CP starts to move faster,43 as t ln(t),
catching up eventually the BP.

An out-of-equilibrium environment may mediate long-ranged
mutual interactions between intruders, which are non-reciprocal
and violate Newton’s third law.44–51 In the typical settings of CF
AMR, when more than one BP is present, the micro-structural
changes of the environment induce effective interactions between
the BPs so that they start to move collectively, minimising the
dissipation and increasing their propagation velocity. Formation
of string-like clusters of BPs, which reveals an emerging effective
attraction, has been first evidenced in numerical simulations46

studying dynamics of a small fraction of strongly repulsive BPs in
a two-dimensional sea of two types of repulsive CPs. The same
effect has been seen in three dimensions.49 Further on, stochastic
pairing of the BPs has been observed in a lattice model with two
BPs only27 and for the relative motion of two BPs in a nearly-
critical fluid mixture, due to emerging critical Casimir forces.52

Recently, for an off-lattice model with a high density of BPs it was
observed that the latter propagate by forming steadily moving
‘‘lanes’’.37 This self-organisation phenomenon resembles (albeit it
emerges under different physical conditions) spontaneous lane
formation in binary mixtures of oppositely charged colloids,53–61

dusty complex plasmas,62 and also for such seemingly unrelated
systems as pedestrian counter flows.63

In this paper we study, via extensive numerical simulations,
some aspects of dynamical self-organisation in two-dimensional
and three-dimensional binary mixtures suspended in an inert
solvent (acting as a heat bath held at a temperature T) in typical
CF AMR settings. The mixture consists of CPs, which are present
at a high density, and BPs, which are present at a low density (see
Fig. 1). The situation under study here differs from the previous
analysis46,49 in that the repulsive interactions between the BPs
and all the CPs are identical, and also from the case37 in that the
density in our settings is still sufficiently small so that there is not
enough of the BPs to build a complete lane spanning the entire
system. The CPs are subject to internal stimuli due to interactions
with the solvent, and also interact between themselves and with
the BPs. The BPs are subject to thermal forces, interact among
themselves and with the CPs, and are also exposed to a constant
force F oriented in the positive x-direction.

We emphasise that we deliberatively exclude from our
modelling the hydrodynamic interactions between the CPs
and the BPs, focussing specifically on the interactions between
the particles of the driven component which emerge due to a
self-produced non-equilibrium environment. This permits us to
highlight the effects of the non-reciprocal forces, disentangling
them from other possible factors which may affect the dynamical
self-organisation phenomenon. At the same time, we note that
the hydrodynamic interactions may turn out to be important,
especially in three-dimensional systems and for high Péclet
numbers.34,40 In particular, for a related, unbounded system of
sedimenting colloids, they are known to produce themselves
correlated motions and large-scale dynamic structures.64 For
bounded two- and three-dimensional systems and for small and
moderate driving forces studied here, the hydrodynamic interac-
tions may have a less dramatic effect resulting, arguably, in a mere
renormalisation of the diffusion coefficient. In any case, of course,
the question whether the hydrodynamic interactions will induce
qualitative or just quantitative changes is an important issue for
further research.

We proceed to show that in the system under study and in
absence of the hydrodynamic interactions the BPs spontaneously
assemble in ‘‘living’’ string-like clusters, similar to the previously
made observations,46,49 which propagate as one entity. Our aim is

Fig. 1 Two-dimensional box with periodic boundary conditions containing
a mixture of interacting particles – the BPs (red circles) and the CPs (green
circles). Left: A snapshot of the system when both the BPs and the CPs are
subject to the thermal forces only. Right: BPs are subject to a constant force F
pointing along the x-axis (see also movie, ESI†).
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to determine, for different values of the applied force, the size-
distribution of these clusters in the steady-state, their extensions
and propagation velocities, as well as to highlight, for two-
dimensional systems a pronounced micro-structuring of the
CPs in front of steadily moving BPs. Lastly, also for the two-
dimensional case, we quantify the emerging interactions between
the BPs, which such a micro-structuring promotes.

The paper is outlined as follows: in Section 2 we introduce
basic notations, discuss the computational method and define
physical parameters of the system under study. Section 3
presents the results of our simulations. Section 4 concludes
our work with a brief recapitulation of our results and some
remarks on possible experimental verifications.

2 Physical parameters and
computational method

To emphasise collective behaviour of the BPs, we choose purely
repulsive interactions between all the particles, described by
the Weeks–Chandler–Andersen potential,65

UðrÞ ¼
e ðs=rÞ12 � 2ðs=rÞ6 þ 1
� �

; ro rc

0; r � rc;

(
; (1)

which is a shifted Lennard-Jones potential truncated at rc = s,
so that U(rc) = 0 and dU(r)/dr|r=rc

= 0. We identify in what follows
s with the diameter of particles and define the radius of a
particle as R = s/2. Note, however, that the potential is soft and
permits the particles to approach each other to separations less
than s. The possibility of such an approach is controlled by
e Z 0 which sets the amplitude of repulsion at r = s. Such a
potential cannot cause any self-organisation of the BPs, but will
tend to suppress it.

We suppose that the dynamics are Newtonian subject to
random thermal forces generated by the solvent. Then, the
equations of motion for the particles trajectories rik

(t) obey

m€rikðtÞ ¼ �
X
jkaik

~rU rikðtÞ � rjkðtÞ
� �

� x_rikðtÞ þ~zikðtÞ þ ~Fdk;2;

(2)

where the index k = 1, 2 (with 1 corresponding to the CPs and
2 – to the BPs), the index ik labels the particles of the same
species, ik = 1,2,. . .,Nk, and the sum with the subscript jk a ik

extends over all jk excluding jk = ik. Next, m is the mass of a
particle (the same for both types of particles), the dot denotes
the derivative with respect to time t, and x is the friction
coefficient related to the viscosity Z of the suspending solvent
via the single-particle Stokes relation x = 6pZR.

Further on, dk,2 is the Kronecker-delta, such that d1,2 = 0 and

d2,2 = 1. The force
-

F = (F,0) acts on the BPs only, while~zikðtÞ are
random thermal forces which mimic interactions with the solvent.

We suppose that the components of~zikðtÞ ¼ zXik ðtÞ; z
Y
ik
ðtÞ

� �
in two-

dimensions and of ~zikðtÞ ¼ zXik ðtÞ; z
Y
ik
ðtÞ; zZikðtÞ

� �
in three-

dimensional systems have a Gaussian distribution with zero mean

and a finite variance, and

zaikðtÞz
b
i0
k0
t 0ð Þ ¼ 2kBTxd t� t 0ð Þda;bdk;k0di;i0 ; (3)

where the horizontal bar denotes averages over thermal histories, a,
b = X, Y and Z, and kB is the Boltzmann constant.

The parameters entering eqn (2) and (3) are chosen such
that we mimic a physical situation corresponding to having a
mixture of two-types of micrometer-sized (i.e., with radius
R B 1 mm and mass mc B 4 � 10�15 kg) colloids in an aqueous
solution (viscosity ZB 10�3 Pa s) at a room temperature (kBT B
4 � 10�21 J). This gives the diffusion coefficient Dc of the colloid
Dc B 0.2 mm2 s�1, so that the corresponding diffusion time
td = R2/Dc B 5 s. In what follows, we use a dimensionless time
t = t/td and the length scales are measured in units of s.
Accordingly, the force F gets renormalised to give a dimension-
less force f = 0.5RF/(kBT) = 0.5Pef, Pef being the Péclet number
for CF AMR.18,19 We note that for such a choice of the
parameters and dimensionless variables, the numerical coeffi-
cient before the dimensionless inertial term in eqn (2) appears
to be very small (B10�6), while the numerical coefficient before
the first term in the second line in eqn (2) is much larger (B10).
We nonetheless do not drop the inertial term, since keeping it
permits us to resort to the well-justified Velocity Verlet integra-
tion algorithm, which provides a simultaneous access to both
instantaneous positions and the velocities of the colloids.

Here we concentrate on the response of the system under
study to an external dimensionless force f of a small and
intermediate amplitude, 0 r f r 10, (so that the Péclet number
is in the range 0 r Pef r 20), focussing solely on the case of an
ambient temperature and on the case when the area (for two
dimensions) and the volume (for three dimensions) fractions
occupied by all the particles is slightly less than 0.6. In two-
dimensional systems, our simulations are performed in a
40 � 40 (in units of s) box with periodic boundary conditions
comprising N1 = 1100 CPs and N2 = 122 BPs. In three dimen-
sions, the simulation box has size 20 � 20 � 20 with N1 = 8251
CPs and N2 = 916 BPs. Therefore, in both cases the area fraction
f2 = pN1/(4 � 402) and the volume fraction f3 = pN1/(6 � 203)
occupied by the neutrally buoyant component is slightly less
than 0.54. In two-dimensions, such an area fraction is signifi-
cantly below where the system could become hexatic or glassy
and should behave like a simple fluid, while for the three-
dimensional systems the volume fraction is slightly above the
freezing transition point for a mixture of hard-core particles.66,67

We recall, however, that in our study the potential is soft such
that both the area and volume fractions can be effectively less
than the mentioned above values. Moreover, any self-ordering
of the neutrally buoyant component can be destroyed due to the
presence of a biased component.

Further on, after introducing the particles into a box, we let
the system equilibrate for a fairly long period of time (t = 2 � 105)
at f = 0, when the BPs are identical to the CPs, and then switch on
the force f 4 0 acting on the BPs only. We do not observe any
onset of crystallisation in the three-dimensional systems during
the equilibration stage. We let then the system evolve at a fixed
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non-zero f till t = 106, recording periodically all the parameters of
interest. Behaviour at different temperatures, different densities
of the CPs and the BPs and for larger forces will be reported
elsewhere.

3 Results

For two-dimensional systems, typical behaviour is illustrated in
a movie (ESI†),‡ showing an evolution of the system under an
external force f = 2 (Pef = 4). In general, we observe that for both
two- and three-dimensional systems, the BPs spontaneously
agglomerate into clusters – a sort of living ‘‘trains’’, which
propagate as one entity leaving a trail of clear solvent behind.
This trail extends over quite a few particles diameters and
closes completely within a few diffusion times tD, due to
diffusive mixing and due to overlapping with the condensed
regions in front of the trailing BPs. In consequence, we expect
that even for relatively small systems considered here the finite-
size effects do not matter. We note, as well, that the formation
of such clusters is in agreement with the earlier observed
behaviour for two-dimensional systems.46,49

The trains of the BPs interact with the CPs which sometimes
leads to the breakup of the clusters, which can then either
recombine again or travel further separately, and also grow in
size by accretion of isolated BPs or of smaller trains of BPs
drifting towards the bigger ones. This is reminiscent, in a way,
of the behaviour of the so-called living polymers,68 although
our system differs from the latter one in two important aspects:
(a) all the trains move steadily in the direction of the applied
force, and (b) clustering is prompted not by any sort of a
chemical bonding, but rather by the forces mediated by the
environment, which is brought out-of-equilibrium by the BPs
themselves. Similar to living polymers, the size distribution of
the trains of the BPs attains a steady-state form as time
progresses, which we discuss below. Typical relaxation times
are of order of 102tD.

3.1 Cluster-size distributions and spatial extensions of
clusters

We define clusters of BPs as a collection of ‘‘connected’’
particles, where any two particles are called connected once
the distance between their centres is s or smaller; we note this
definition is somewhat arbitrary. In Fig. 2 we plot, for both two-
and three-dimensional systems, the (normalised on the number
of the BPs) steady-state size distribution ns for the number of
particles s in a cluster at different values of the force f. At f = 0, the
cluster size distribution decays exponentially with a steep slope
(related to the inverse concentration of the BPs). Upon a gradual
increase of f up to f = 1 (corresponding to Pef = 2), we observe that
the distribution gets shifted upwards, attaining an exponential
form with the characteristic length which is clearly dependent on
the value of f. In this regime, we expect that the mixture of the
CPs is still close to equilibrium and the break up of large clusters

is dominated by diffusion. For intermediate f, for both two- and
three-dimensional systems, there is an initial rapid decay of ns

followed by a slower decay that is again exponential, but with a
slower decay rate. In fact, for two-dimensional systems the decay
rates for f = 4 and f = 10 do not differ much, so that we may expect
that for f = 10 we observe some asymptotic form. For three-
dimensional system with 1 r f r 10, the variation of the slope is
even less pronounced than in two-dimensions.

Fig. 2 The cluster-size distribution ns of the BPs for different values of f.
Upper panel: Two-dimensional systems with small forces (Pef = 0.08, 0.24,
0.32, 0.4, 0.6 and 2). Middle panel: Two-dimensional systems with inter-
mediate values of f (Pef = 2, 4, 8 and 20). Lower panel: Three-dimensional
systems with intermediate values of f (Pef = 2, 4, 8 and 20).

‡ The equilibration time in the movie is t = 30 and is substantially shorter than
the analogous time used in numerical simulations.
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We focus next on the mean spatial extensions Rx and Ry of
the clusters along the x- and y-axes in two-dimensional systems.
Rx is given by

Rx ¼
1

s

Xs
j¼1

xj � xc
� �2* + !1=2

; (4)

where xj and xc are instantaneous positions along the x-axis of a
given BP within a cluster, and of the centre of mass of this
cluster, respectively. A similar definition is used for Ry. In Fig. 3
we present plots of Rx and Ry as functions of s, which show that
the mean extensions of the clusters do grow with s but this
growth cannot be characterised by a power-law with a unique
exponent z – for small clusters z is close to one but for larger
ones z is close to 1/2. Interestingly enough, neither Rx nor Ry

show any appreciable dependence on f. The behaviour of mean
spatial extensions of the clusters in three-dimensional systems
is very similar, and we do not present the corresponding plots.

3.2 Clusters’ velocities

In Fig. 4, for both two- and three dimensional systems, we plot
our numerical results for the steady-state averaged velocity v of
a cluster along the x-axis as a function of s for different values of
the force f. We observe that for f = 1, 2 and 4 the reduced
velocity v/f (the mobility) is a monotonically growing function of
s, and apparently plateaus becoming s-independent for larger
values of s. This behaviour is consistent with the earlier
observations46,49 (apart from the onset of saturation clearly
visible in our simulations) and also the analysis27 of the
dynamics of a pair of BPs in a lattice gas of unbiased hard-
core particles. We note that for two-dimensional systems v/f is
somewhat larger, but otherwise there is no apparent difference
in the behaviour observed for two- and three-dimensional
systems. For the largest force (i.e., for f = 10) v/f exhibits some
non-monotonic behaviour characterised by a dip at s = 2
followed then by a monotonic growth with s and an apparent
saturation for larger s. In three-dimensional systems such a dip
is absent and v/f is a monotonic function of f.

Next, we notice that v/f shows an apparently non-Stokesian
behavior: even for clusters comprising just a single BP the
reduced velocity, (which has to be an f-independent constant in

the Stokesian regime), varies appreciably with f. The reason for
such a departure can be two-fold: first, it can be due to effective
interactions between different BPs; second, the values of the
force f can be already too large to ensure the validity of the
linear response relation.49 We performed simulations with a
single BP in a bath of CPs in two dimensions and determined
the force–velocity relation for this case. The latter is presented
in the lower inset in the upper panel in Fig. 4 and shows that,
indeed, v/f starts to deviate from a constant for f below f = 1.

3.3 Inhomogeneous distribution of the majority component
around a pair of steadily moving BPs and effective probe–probe
interactions

We finally turn to the analysis of (a) the inhomogeneous
distribution of the CPs in presence of two steadily moving
BPs, and (b) effective interactions between these two BPs
emerging due to such an out-of-equilibrium environment in
two-dimensional systems.

To this end, we perform simulations with a pair of BPs, kept
in a fixed configuration (characterised by the fixed mutual
centre-to-centre distance r, measured in units of s, and
the fixed polar angle f, see Fig. 5) and dragged through a

Fig. 3 Two-dimensional systems. Mean spatial extensions Rx (panel (a))
and Ry (panel (b)) of a cluster as functions of s for different values of the
force f: f = 1, 2, 4 and 10 (Pef = 2, 4, 8 and 20, respectively). Solid line and
dashed line indicate the slopes 1/2 and 1, respectively.

Fig. 4 Reduced velocity v/f of a cluster versus s for different values of
f: f = 1, 2, 4 and 10 (Pef = 2, 4, 8 and 20). Upper panel: Two-dimensional
systems. The upper inset: v/f vs. s for s = 1, 2, 3 and 4. The lower inset: v/f
vs. f for the situation with just a single BP moving in a mixture of CPs. Lower
panel: Three-dimensional systems.
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suspension of CPs by a constant force. In simulations, we have
a box of size 40� 40 with periodic boundary conditions and the
number of the CPs is N1 = 1220, such that the area fraction
occupied by all the particles is still equal to 0.6.

The fixed orientation of two BPs with respect to each other is
maintained by compensating the forces exerted on the BPs by
the neutrally buoyant component and internal stimuli in the
following way: at each moment of time we record the instanta-
neous position rj (t) and the instantaneous velocity :rj (t) of each
of the BPs, j = 1,2, and calculate numerically the instantaneous
value of the force exerted on a given BP by the second BP, all the
CPs, the solvent and the external force, (which is defined in the
right-hand-side of eqn (2)), such that, explicitly

~F1 ¼ �
X
i1

~rU r1ðtÞ � ri1ðtÞ
� �

� ~rU r1ðtÞ � r2ðtÞð Þ

� x_r1ðtÞ þ~z1ðtÞ þ ~F ;

(5)

and

~F2 ¼�
X
i1

~rU r2ðtÞ � ri1ðtÞ
� �

� ~rU r2ðtÞ � r1ðtÞð Þ

� x_r2ðtÞ þ~z2ðtÞ þ ~F :

(6)

We define next the effective force per particle, D
-

F = (
-

F1 +
-

F2)/2,
exerted on the centre of mass of the pair of BPs and also the
difference d

-

F = (
-

F1 �
-

F2)/2 of the two forces in eqn (5) and (6).
Consequently, we have

-

F1 = D
-

F + d
-

F and
-

F2 = D
-

F � d
-

F. Then, in
simulations we replace

-

F1 and
-

F2 by
-

F, which operation naturally
preserves the distance between the two BPs and their mutual
orientation. From the formal viewpoint, such a procedure corre-
sponds to ‘‘connecting’’ these two BPs by an inextensible and
non-rotatable holonomic bond, which acts with the force d

-

F
on the particle #1 and with the force �d-

F on the particle #2
(see Fig. 5).

In Fig. 6 we present a density plot of the stationary distribu-
tion of the CPs around a pair of steadily moving BPs, separated
by distances r = 2 and r = 4 with the polar angles f = p/3 and
f = p/2, for f = 5 (Pef = 10). The frame of reference is steadily

moving with the BP. We observe that the profiles are strongly
asymmetric showing that the CPs crowd in front of the BPs and
are depleted in the pronounced wakes of the BPs. Qualitatively,
they look quite similar to the profiles observed in the lattice
gas model,27 and also in the numerical44 and experimental39

analyses of micro-structuring of the flowing CPs in presence of
two fixed BPs. We show that also in our settings when the BPs
are steadily moving under an external force while the CPs form
a quiescent environment, the latter exhibit a very pronounced
structuring with a peculiar interference of the high density rims.

Effective interactions between two BPs, mediated by the CPs,
are quantified by calculating numerically the projection f12 of
the force exerted by the leading BP on the trailing one on their
line of centres, which is defined as f12 = d

-

F�r21 (see eqn (5) and (6)).
In Fig. 7 we plot this force as a function of the mutual separation r
for different values of the angle f. First, we notice that this force
can be negative (repulsion) or positive (attraction), depending on
the mutual orientation of the BPs, defined by the polar angle
f and the distance r between their centres. For f = 0, p/6, p/4 and
p/3 the interactions are attractive at the closest approach distance,
while for f = p/2 the force f12 is very close to zero. For f = 0, when
two BPs are on the same line, the interactions are always attractive
and long-ranged. This is quite evident, because here the trailing
BP travels in a depleted wake of the leading BP and easily catches
it, which translates into an effective attraction. We note parenthe-
tically that a response of the mixture of CPs on such a driving ‘‘in
tandem’’ of a pair of a leading and a trailing BPs in a fixed
configuration with f = 0 has been studied experimentally40 for a
variety of values of the separation distance r. The behaviour
observed for other polar angles for which f12 changes the sign
with r, and decays more rapidly. Second, interestingly enough, the
amplitude of the force f12 appears to depend on the external force
f acting on the BPs: it is substantially larger for f = 10 that for

Fig. 5 Configuration of a fixed pair of BPs (#1 is the trailing BP and #2 is
the leading one) dragged through a two-dimensional mixture of CPs.

Fig. 6 Distribution of the CPs around a pair of steadily moving BPs (white
dashed circles), separated by distance r = 2 (panels (a) and (c)) and r = 4
(panels (b) and (d)) with polar angles f = p/2 (panels (a) and (b)) and f = p/3
(panels (c) and (d)), for f = 5 (Pef = 10).
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f = 2.5. In a way, this parallels the observation39 that the effective
force between two BPs, held with an optical trap in a flowing
suspension of the CPs, increases with increasing flow velocity.
Lastly, we observe that for f = p/6 and r E 1.5, the sign of f12

depends on f – for f = 2.5 the two BPs repel each other, while for
f = 10 the interactions are always attractive.

4 Conclusions

To recap, we studied here the cooperative phenomena emer-
ging in a binary mixture of colloidal particles, with identical
repulsive interactions, in typical settings of the constant-force
active micro-rheology in two- and three-dimensional systems.
The mixture consists of a majority component – neutrally
buoyant colloids subject to internal stimuli only, and a minority
component – colloidal probes also subject to a constant force.
We have shown that in such a system each of the probes alters
the distribution of the majority component in its vicinity,
resulting in a significant structuring and driving its spatial
distribution out of equilibrium. The latter circumstance is
responsible for the emergence of effectively attractive interactions
between the repulsive probes and prompts them to move collec-
tively assembling in clusters. We analysed the size-distribution of
the self-assembling clusters, their specific force–velocity relations
and extensions, and also properties of the effective interactions
emerging between the probes.

We note finally that a difficulty in experimentally testing this
work is that while prior constant force experiments used
magnetic particles as the biased probes, magnetic particles
are attracted to each other through a magnetic dipole force.
A more suitable experimental realisation would be to use non-
density matched probes in a system of otherwise neutrally
buoyant colloidal component.
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Thomas, M. Rubin-Zuzic, W. J. Goedheer, V. E. Fortov,
A. M. Lipaev, V. I. Molotkov, O. F. Petrov, G. E. Morfill
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