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Abstract

We present a model of one-dimensional symmetric and asymmetric random walks. The model is applied to an experi-
ment studying fluid transport in a rapidly rotating annulus. In the model, random walkers alternate between flights (steps
of constant velocity) and sticking (pauses between flights). Flight time and sticking time probability distribution functions
(PDFs) have power law decays: P(¢t) ~ t~* and ¢t~" for flights and sticking, respectively. We calculate the dependence of
the variance exponent y (62 ~ 1) on the PDF exponents p and v. For a broad distribution of flight times (i < 3), the
motion is superdiffusive (1 < y < 2), and the PDF has a divergent second moment, i.e., it is a Lévy distribution. For a broad
distribution of sticking times (v < 3), either superdiffusion or subdiffusion (y < 1) can occur, with qualitative differences
between symmetric and asymmetric walks. For narrow PDFs (u > 3, v > 3), normal diffusion (y = 1) is recovered. Pre-
dictions of the model are related to experimental observations of transport in a rotating annulus. The Eulerian velocity field
is chaotic, yet it is still possible to distinguish between well-defined sticking events (particles trapped in vortices) and flights
(particles making long excursions in a jet). The distribution of flight lengths is well described by a power law with a divergent
second moment (Lévy distribution). The observed transport is strongly asymmetric and is well described by the proposed
model.

1. Introduction a%(t) = (x*(1)) — (x(1))? = 2D, (1)
1.1. Random walks where D is the diffusion coefficient. The broad appli-
cability of this simple result is a consequence of the

A wide range of diffusive processes can be inter- Central Limit Theorem (CLT): a collection of sums of
preted as random walks. For example, the Brownian a large number of statistically independent events will
motion of a passive particle in a homogenous fluid be Gaussian distributed, provided that the distribution
is described as a sequence of steps generated by ran- of the individual event sizes is not too broad. As ap-
dom collisions with fluid molecules. As Einstein [1] plied to random walks, the CLT implies that whenever
showed, an ensemble of such particles will spread out the mean time between steps and the mean square step
with a variance size (second moment of the step size distribution) are

finite, normal diffusion will result.
o . In general, anomalous diffusion (02 o t¥ with
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and the associated breakdown of the assumptions of
the CLT [2,3]. It is often still possible to describe the
transport in terms of a random walk, with broad dis-
tributions of step sizes or waiting times accounting for
the correlations in the motion. For a distribution P (/)
of step sizes / given by P(l) o« [7#* with u < 3, the
second moment is divergent, and the CLT is no longer
applicable. The long excursions which result in a di-
vergent second moment are called Lévy flights. The
presence of Lévy flights usually leads to anomalous
diffusion. Quantitative connections between the be-
havior of the distribution functions and the exponent
¥ have been made for symmetric random walks [4-9].

In this paper we consider asymmetric, or biased,
one-dimensional random walks, where steps in one
direction occur with a higher probability than steps
in the opposite direction. This can occur in situations
such as charged particles moving in an electric field,
or particles carried by an asymmetric flow. We will
examine the case of flights with finite velocity. (Some
authors use the term Lévy walks for motions with
constant velocity and reserve flights for instantaneous
jumps.) When the CLT applies, it is always possible
to shift to a reference frame where vy = 0, and
the presence of asymmetry only affects the diffusion
coefficient, not the exponent (y = 1). When the CLT
is not applicable, we find that the asymptotic behavior
for symmetric and asymmetric random walks can be
quite different.

The model we present examines anomalous diffu-
sion arising from random walks with discrete steps of
constant velocity, separated by pauses (sticks) of ran-
dom duration. Asymmetric random walks of this form
were used to model the first experimental observations
of anomalous diffusion (of electrons in amorphous
materials) [10,11], and were studied theoretically for
cases with broad distributions of sticking times (but
with narrow distributions for flight lengths) [8]. We
consider power law forms for both sticking and flight
distribution functions, and provide the first compre-
hensive analysis of the relationship between y and the
sticking and flight distribution exponents for both
symmetric and asymmetric random walks. Several
other mechanisms can lead to anomalous diffusion,
e.g., when the successive discrete steps of a random

walk have strong correlations [2]. Also, random walks
occurring in a random environment can lead to ultra-
slow diffusion (o2(t) ~ (In#)%, & > 0) [12,13]. Frac-
tional Brownian motion, a generalization of Brownian
motion that leads to anomalous diffusion, was pro-
posed by Mandelbrot and Van Ness [14]. As in regular
Brownian motion, individual steps cannot be resolved.
A comprehensive review of other mechanisms leading
to anomalous diffusion can be found in [2].

1.2. Transport in fluid flows

A collection of particles in a nonuniform flow will
disperse as a consequence of the shear in the veloc-
ity field as well as the effects of molecular diffusion.
In most situations, advection due to fluid motion is
much faster than molecular diffusion, and large scale
structures, such as eddies, jets, or convection rolls,
will dominate the transport. This results in correla-
tions in particle velocities for large distances and/or
times, and can lead to a failure of the assumptions of
the CLT. In fully developed turbulence, for example,
the presence of eddies distributed over many spatial
scales results in superdiffusion (6% xt¥,y > 1), and
Richardson [15] argued that the separation of two par-
ticles in the atmosphere is described by o 3.

Extremely long time transport of passive tracer par-
ticles in fluid flow will be normally diffusive due to
Brownian motion [16]. However, for many important
flows this time scale is enormously large; for exam-
ple, in oceanic flows typical length scales are L ~ 10
km; for a diffusion constant D = 107> cm?/s, the
diffusive time scale is tq = L%/D ~ 10° yr, while
time scales of interest are typically ~ 1yr. In this
paper we present an experimental investigation of
transport in a rotating fluid flow consisting of a cir-
cular chain of vortices bounded by a jet. The motion
of tracer particles in the flow is naturally described
as a one-dimensional random walk, alternating be-
tween motion in the jet corresponding to steps, and
waiting times between steps while the particles are
trapped in the vortices. Since particles move between
vortices almost exclusively in the jet, the motion is
strongly asymmetric. The measured distribution of
the step sizes is well described by a power law with
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exponent less than three; thus the steps are Lévy
flights.

Previous work on symmetric random walks is dis-
cussed in Section 2. In Section 3, we introduce a con-
tinuous time random walk model which allows for
asymmetric motion, showing that in some cases the
growth of the variance is different from the symmetric
results. Section 4 discusses our experimental system,
and in Section 5 we present observations of strongly
asymmetric Lévy flights. Appendix A defines the no-
tations used in this paper, and Appendix B contains a
discussion of additional details of the model.

2. Anomalous diffusion and Lévy flights
2.1. Theory

For simple cases, the variance of an ensemble of
random walkers grows linearly with time, as given by
Eq. (1), with the diffusion constant D being given by

(12 = (1)?

The moments of / are based on Pg(l), the distribution
of step sizes (or flight sizes, as we will use), and T is
the mean time between the start of successive flights.
This result depends only on the first two moments of
the step size Probability Distribution Function (PDF)
and finite nonzero T, but no other details of the random
walk. The mean position of random walkers is
{)

=Y 3
(x) Tr (3

which is zero for a symmetric ({/) = 0) random
walk [2].

For PDF s that decay sufficiently slowly, the CLT
no longer applies. If Pp(jI|) ~ |I|7# and u < 3, the
second moment {/?) is infinite (u > 1 for the distribu-
tion to be normalizable). A random walk for this type
of PDF is a Lévy flight, and it has been shown [4-7]
that the variance scales with time 02(1) ~ t¥ with

y =2, l <pu<?2. 4)
y=4-pu. 2<p<3, (5)
y =1, u > 3. (6)

In addition, for u = 2 the variance grows as %/In ¢,
and for u = 3 the variance grows as t In 7 [7]. These
results are valid when the random walker moves at
constant velocity, taking flights with a length dis-
tribution given by Pr(|l|), or equivalently, a distri-
bution of flight times having the same asymptotic
power law behavior. In addition, the time 7 must be
finite. Superdiffusive transport, | < ¥ < 2, occurs for
2 < p < 3. When y = 2, the transport is ballistic,
that is, the exponent is the same as that of a collection
of particles moving in different directions in straight
lines, with no pauses or changes in direction.

To consider cases where T — oo, we allow the
random walker to pause (stick) between steps,
and introduce the sticking time distribution (also
called “trapping” distribution). Again, we assume
the behavior at large times decays as a power law:
Ps ~ t7V. When v < 2 (with v > 1 for normaliza-
tion), (fs) (the first moment of the sticking PDF) is
infinite and the variance has the possibility of scaling
subdiffusively. Shlesinger [8] investigated the case
where random walkers were stuck for varying times
between random (symmetrically chosen) steps with
finite mean square step size (u > 3), finding

v > 2, (7
l<v<?2. (8)

y=1
y=v-—1,
Shlesinger [8] also considered random walks with

asymmetric steps ({/) # 0) and found the scaling of
the mean, (x) ~ (/)2# with

g=1. v> 2, 9
B=v—1 l1<v<?2, (10)
and the scaling of the variance, o2 ~ 7, with

y=4—v, 2<v <3, (11)
y=2v-2, l<v<2. (12)

In the asymmetric case, the possibility for super-
diffusion exists with broad sticking PDFs. For exam-
ple, when v = 2.5, y =4 —2.5 = 1.5. This will be
discussed further in Section 3. Asymmetric random
walks of this type describe transport of electrons in
amorphous materials [10.11], where the asymmetry
is introduced by a bias voltage.
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The case with power law sticking PDFs combined
with symmetric Lévy flights was examined by Klafter
and Zumofen [9] who found for flights with constant
velocity

v<2, 2<pu<3, (13)
v>2, 2<pu<3, (14)

y=2+4+v—u,
y=4-u,

where Eq. (14) is the same as Eq. (5). This formula
allows for the behavior to be subdiffusive (y < 1) for
sufficiently small values of v (1 < v < — 1).

Random walks with a broad sticking and flight dis-
tributions can be found in Hamiltonian systems. Stick-
ing behavior is usually associated with island chains
near closed, ordered regions of phase space, while
flights occur between island chains or in chaotic jets
[3,17,18]. The distributions were found to be well de-
scribed by power laws for both sticking [17-21] and
flights [6,21,22]. In some cases, sticking events in a
map representation are equivalent to flights in the full
phase space [6,22-24]. Maps with power law sticking
behavior [17,25] and flight behavior [26] appear to be
common. Transport in Hamiltonian systems can be ei-
ther normal or anomalous, depending on the structure
of the phase space [27-29].

Two-dimensional incompressible fluid flow (of the
type discussed in Section 5) is related to Hamilto-
nian systems, as the equations of motion for particle
trajectories are equivalent to Hamilton's equations
with the streamfunction ¥ (x, y,7) taking the place
of the Hamiltonian [30]: dx/dr = 3vy//3y, dy/dt =
—3dy¥/0x. For time-dependent streamfunctions, par-
ticles can follow chaotic trajectories, resulting in
chaotic advection (corresponding to Hamiltonian
chaos) {30,31]. This can occur even when the flow
is time periodic (laminar). Previous experimental
work measured both sticking and flight time PDFs,
including flows exhibiting Lévy flights and anoma-
lous diffusion, and found agreement with the results
discussed above (Egs. (4)-(6) and (13), (14)) [32].

2.2. Experiments

Several experimental studies of transport have ob-
served anomalous diffusion. Subdiffusion has been ob-

served in both linear and planar arrays of vortices of
alternating sign [33-35]. The results have been inter-
preted as a simple random walk comprised of sticking
and flight events [33]. Particles carried by capillary
waves were found to move superdiffusively [36,37],
linked to the fractional Brownian motion of the par-
ticle trajectories. Tracers in the ocean showed evi-
dence of superdiffusion, although lack of statistics
prevented the study of underlying mechanisms [38].
In addition, experiments studying mixing of polymer-
like micelles found that transport was superdiffusive,
and well described by a Lévy flight model [39,40],
although direct observation of flight motions was not
possible. In addition to fluid experiments, anomalous
diffusion has been observed in photoconductivity of
amorphous materials [10,11] and motion of low den-
sity lipoprotein receptors on the surface of human skin
fibroblasts [41]. Lévy flights also appear in an analy-
sis of sub-recoil laser cooling of atoms [42,43], where
the mean time for atoms to leave an optical trap is
infinite.

3. Asymmetric random walks

In results such as Egs. (4)—(6) and (13), (14), the
random walk was assumed to be symmetric (Pr(l) =
Pr(—1)). In the absence of left-right symmetry, many
of these results change. For example, if the flights
are exclusively in one direction (Pr(/) = 0 when
! < 0), the sticking occurrences will appear as flights
in the opposite direction when viewed from a refer-
ence frame centered on (x(¢)) (which might not be
moving at constant velocity; e.g., Table 3). In cases
such as this the divergence of the second moment of
the sticking PDF can lead to superdiffusive behavior
(Eq. (11)), because the sticking events will be Lévy
flights as seen in the moving reference frame.

In this section we use a model based on a one-
dimensional random walk to predict the asymptotic
scaling of the variance: as t — 00, o2(t) ~ t¥. The
goal is to find the dependence of ¥ on the parame-
ters of the model, and to examine differences between
symmetric and asymmetric random walks.



E.R. Weeks et al./Physica D 97 (1996) 291-310 295

3.1. Model

Consider a particle that alternates between sticking
events (remaining at the same location for some period
of time), and constant velocity flights (moving to the
left (—x direction) or the right (+x)). The velocity of
the leftward flights is vj, and the rightward v,. (v} > 0
means motion to the left, and v, > 0 means motion
to the right.) The probability of a leftward flight is p;;
rightward, pr = 1 — p;. The particles originally start at
the origin x = 0, and at time ¢t = O start flight events
with probability pIO: or sticking events with probability
p(s) =1- pg.

Both flight and sticking events are of random dura-
tion. The probability distribution function (PDF) for
flights in either direction is given by the function

Pr(1):

0, t <If,

15
At™H, >, (5)

Pr(1) ={

where ¢ is a cutoff at short times to allow the function
to be normalizable; the normalization constant is A =
(u — 1)ef ", Similarly, the sticking PDF is given by
the function Ps(7):

0, t <lts,

Bt™", t>tg (16)

Ps(t) = I

with B = (v — l)té’_l. The scaling exponent y of the
variance only depends on the asymptotic behavior of
the sticking and flight PDFs (the exponents x and v),
although some results that follow will depend slightly
on the exact behavior at short times; this will be clari-
fied later. This particular short time behavior was cho-
sen for convenience in comparison with experimental
results (see Section 5).

Our goal is to find the PDF X (x, 7) of the particle
positions for long times, following a procedure similar
to that of Ref. [5]. From this PDF we can calculate
the variance o 2(¢) = (x2(r)) — (x(#))2, and extract the
scaling exponent y. The moments of x are obtained
from the Fourier transform of X:

w — (x">_ a7

-n
@ akn k=0

We construct X (k,t) from simpler PDFs related
to the particle motion. Let £(x, t) be the probability
that a flight event has a distance of x and a duration
of 1:

§(x, 1) = [ped(x —vit) + pd(x +uit)] Pr(r).  (18)

The Dirac delta functions ensure that the flights
are made with the correct constant velocity. Define
V¥ (x,t) to be the probability that the particle has
moved a distance x in time ¢ in a single flight event,
and possibly is still moving:

Wix,t)=[pd(x — vt)
o
+ pid(x + Ull)]f dr Pr(1). (19)
t

Similarly for sticking events, @(¢) is the probability
that the particle has been motionless for at least dura-
tion ¢ and possibly will remain motionless:

o0

<D(t)=/ dz Ps(7). (20)

1

In addition, we define two functions related to X.
Let Y (x, t) be the probability of just starting a sticking
event at x,t and Z(x,t) be the probability of just
starting a flight event at x, t. Then

Y(x, 1) = pl8(x)8(r)

oC !
+ / dx'/ dr’ Z(x', Ex —x' t = 1),
50 0

(21)
Z(x, 1) = ppa(x)8(1)
t
+[ dt' Y(x', t)Ps(t — t'). (22)
0
The delta functions represent the initial conditions at
t = 0. The integrals evaluate the probability of being at

the correct location earlier, and then having moved to
(or stayed at) the current location to begin the sticking
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or flight event. X (x, ¢) can be defined in terms of these
new functions, and we get

t

X(x,t) = / di' @@ —tHYY(x, 1)

0

0 t
+f dx'/ di'w(x -x',t —HZK',t).
—oc 0

(23)

X (x, 1) is the probability of getting stuck at location
x at an earlier time ¢ multiplied by the probability of
still being stuck there now (at time ¢), added to the
probability of starting a flight somewhere earlier (at
x', t") multiplied by the probability of flying to location
X NOW.

The integral equations can be solved by Fourier
transforming in space and Laplace transforming in
time. Thus:

Xk, s)=D(s)Y(k,s) + Pk, s)Z(k.s)

0 0z
=[s~"(1 - P5)] st e )
1 —&(k, 5)Ps

- - 2+ pg&(k,

+[per(se) + pii(s)] [I)I—FTPUS(%Q] :
- s S

(24)

where sy = s — ikv, sy = s + ikv, (each of the four
terms in square brackets [ ] corresponds to one of the
terms in the previous line). The function A has been
introduced for convenience:

A(s) = s = Pr(s)). (25)
Note that
E(k,s) = pcPr(ss) + p1Pr(s). (26)

At this point X (k, s) has been completely expressed
in terms of the Laplace transforms of the two elemen-
tary PDFs for flight and sticking events, Pr(s) and
i;s(s).

Using Eq. (17), we obtain (x) and (xz) by taking
derivatives of X(k, s):

X) = vave(Pg + P(S)ISS)(I - ﬁF)

2 @7)
s2(1 = PePs)
(x2) = 2[ v (1 — P + s B )(1 — Pr o)
+02 Ps(Pe — DsFr|
0 0 p.
y (pg + PSPS) (28)

s3(1 — PePs)?’

where vave = Prvr— pivi and vms = / prv2 + pivf. If
Vave 18 set to zero, the expressions provide the behavior
for a symmetric random walk. The results in Egs. (27)
and (28) are exact for any form of Pr(¢) and Ps(?);
no approximations have been made.

3.2. Results

The asymptotic behavior of (x(¢)) and (xz(t)) at
large t (small s) can be obtained from an expansion
of Egs. (27) and (28) in powers of s. The Laplace
transforms of Pg(¢) and Ps(¢) (Egs. (15) and (16)) are

Pr(s) = As*~' (1 — . stp), (29)
Ps(s)=Bs"~ (1 —v,st5) . (30)

Expanding the incomplete Gamma function for small
arguments yields

Fr(s)=—T@— wtt's*~ 1= (ir)s

+%(tf2)s2 ~ %(zﬁ)ﬁ - 31)
with a similar result for f’s (s). The expression in terms
of the moments of the PDFs is correct only for these
particular PDFs.

We begin with the symmetric case, vaye = 0, so that
{x) = 0 and the variance az(t) = (xz(t)). The asymp-
totic behavior is found by putting the expansions into
Eq. (28) and keeping only the leading term. The re-
sults, summarized in Fig. 1(a) and Table 1, are in the
form a2(t) = C (Urms )17 . Fig. 1(a) shows the asymp-
totic diffusive behavior in the form of a phase diagram
with the different shadings representing the ballistic,
superdiffusive, normal, and subdiffusive regimes. The
transitions from one phase to another that occur as the
exponents of the PDF's are varied are sharply defined
only in the infinite time limit.
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i 2 3 u 4

The results for the exponent y are in agreement with
the earlier work discussed in Section 2. In addition

we calculate the coefficients of the power law terms
which are also presented in Table 1.

The behavior displayed in Fig. 1 can be understood
in terms of the underlying behavior of the random
walker. In all cases the variance is directly propor-
tional to (vmms)® = pi vl2 + prvrz, and this is the only
dependence on py or p; and v; or v, (assuming vaye =

Fig. 1. Phase diagrams for variance of (a) symmetric and (b)
asymmetric (or biased) random walks. 1 and v are the exponents
controlling the asymptotic power law decay of the flight and
sticking PDFs, respectively: Pg(tf) ~ tf_ # and Pg(ts) ~ 15 v,
as t — oo. For each region, bordered by the solid lines, the
relationship between the variance exponent y (62(r) ~ 1¥]
and u and v is shown. The shadings indicate areas where the
behavior is normally diffusive (y = 1), subdiffusive (y < 1),
superdiffusive (y > 1), and ballistic (y = 2).

pevr — pivp = 0). For the case of normal diffusion,
pw>3andv>2,y =1and C = (13)/({tr) + {t5)).
Writing (z‘fz)vrzmS = (12) and (t;) + () = T reproduces
the result for Brownian motion, Egs. (1) and (2). When
the flight PDF exponent u becomes less than three,
(% diverges and the behavior becomes superdiffusive.
When {|/|) diverges as well, we have the limiting case
of ballistic motion. (In this case, (#) and therefore T
also has diverged, but the implication of this is that
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Table 1
Anomalous diffusion results for symmetric random walks
Conditions Exponent y Coefficient C
)

>3 v>2 1 e +es)

2 !
2 -
2ep<d v>2 4-u (o) | wrm
l<u<2 v>u 2 2—u

1 2\ 1—v
uw>3 l<v<?2 v—1 (I‘( —v)l‘(v))<tf)'s

23— =1 1-
ve<u<3 l<v<? 24+v—pu (r(_v)}(‘i)ﬂ_w))t]‘f tslv

Note: The variance scales asymptotically as o2(1) ~ Ct¥ vZ.o (Ums = (p1 vl2 + prv2)1/2), with coefficient C and exponent y listed
in the table for different values of the flight PDF exponent u and the sticking PDF exponent v. y is correct for any PDF with the
same asymptotic scaling, while the values shown for C are correct only for the specific form of the PDFs with the cutoff times tg
and tg (Egs. (15) and (16)). Terms such as (fr) and (t) are the moments of the flight and sticking PDFs, respectively.

Table 2
Scaling of the mean position for asymmetric random walks
Conditions B Coefficient K

; (1)
u>2 v>2 1 (1) +t7)
l<pu<2 v>pu | 1

pn—1 1-v

u>2 [ <v<?2 v—1 (__—__'(#~2)F(2—v)1‘(v))tFtS
l<u<2 l<v<uyu I1+v—pu ( L C D) )t#—ltsl_v

F(?—v)l“(f—u—#v)

Note: vave = prir — 111 # 0, (x) ~ K vavel?. B is correct for any PDF with the same asymptotic scaling, while the values shown
for K are correct only for the specific form of the PDFs (Egs. (15) and (16)). u is the exponent for the decay of the flight PDF, and

v for the sticking PDF.

the flight motion dominates the transport completely,
leading to ballistic motion.) Likewise, when the stick-
ing PDF exponent v becomes less than 2, T becomes
infinite because of the divergence of (f), leading to
subdiffusive behavior as the transport is inhibited. For
both 4 < 3 and v < 2, competition between the Lévy
flights and the sticking leads to behavior that can be
either subdiffusive or superdiffusive, depending on
which process is stronger (see Fig. 1(a)).

For the case when vae # 0, we first compute the
asymptotic behavior of the mean (x) ~ K vayet? using
Eq. (27). The results are presented in Table 2. Again,
these results can be interpreted through the underly-
ing PDFs. In all cases the mean is proportional to vaye,
which contains all of the relevant information about
the asymmetry. When ¢ > 2 and v > 2, {{) is fi-
nite and the mean grows linearly with time, at a rate
given by Kvae = (I)/T. When (/) becomes infinite
(u < 2), T also diverges and the ratio (/}/T is equiv-

alent to vae. As predicted in Section 1, when the
sticking PDF has an infinite first moment, behavior
becomes more complicated, with the result that the
mean grows slower than linearly in time.

The results for the variance in the asymmetric case
are presented in Table 3 and Fig. 1(b). The phase
boundaries are significantly different from the sym-
metric case. The result in the region of normal dif-
fusion (4 > 3,v > 3) is once again equivalent to
Egs. (1) and (2), with (/) having a more complicated
form because of the asymmetry. When either u or v
is between 2 and 3, the resulting superdiffusion can
be thought of as arising from a Lévy flight mecha-
nism. For 2 < u < 3, the flights are Lévy flights; for
2 < v < 3, when shifting to a reference frame mov-
ing at constant velocity (equal to {fr)/({fr) + (t5)); see
Table 2), sticking events appear as Lévy flights mov-
ing “backwards” with the speed of the moving refer-
ence frame. Ballistic motion occurs in the same region
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Table 3
Anomalous diffusion results for asymmetric random walks
Conditions y Coefficient C
r2 (2)+(2)=2(1p)2 (15)?
un>3 v>3 1 I:f) : (;«)3 o) vgve
2
) 24sp)
[ - 20k
u—1
2 2 (T+s) ) 2 g
2<p<3 v>u 4-pu @_‘m[vrms_—rz—fvave](%)
v—1 2
2 AL L
u>v 2<v<3 4—v a0 5 73 ) Vive
l<u<2 V> 2 (2‘u)(v,2m5~vae)
2 _ _2v
u>4—-v l<v<?2 2v—-2 (_—_2[‘ W)—IQ2v-1) ) (tf)zlg' v vae

v<pu<4d4—v l<v<?2 24+v—pu

r2R—wnriwrv-1)

pu—=11-v 2

( o )’F s Vims

F(?—v)l"@—u-}»v)

Note: vave = prvr — piv) # 0, a? ~ Ct” with the coefficients C and exponent y given in the table. T is defined to be (t5) + ().
i is the exponent for the decay of the flight PDF, and v for the sticking PDF. y is correct for all PDFs with the same asymptotic
scaling, while the values shown for C are correct only for the specific form of the PDFs (Egs. (15) and (16)).

as the symmetric case, for similar reasons. When 1 <
v < 2, motion can be either super- or sub-diffusive.
For larger values of v in this range, motion is domi-
nated by the “backwards” Lévy flight mechanism. For
smaller values, (x) grows too slowly (see Table 2),
and the divergence of T leads to subdiffusion.

3.3. Discussion

3.3.1. Exponential PDFs

Exponential PDFs, either sticking or flight, are com-
mon in physical situations. In this case, all moments
are finite, and the PDF can be treated as a power law
with 4 — oo or v — oo. If both flight and sticking
PDFs have exponential tails, the CLT applies, and the
behavior is normally diffusive.

For random walks with exponential sticking PDFs,
there is no difference between symmetric and asym-
metric random walks in the asymptotic transport be-
havior, and the results of Eqgs. (4)—(6) (e.g.,y =4—pu
when 1 < u < 2) apply. Random walks without stick-
ing events can be treated in the same way (all moments
are finite and equal to zero) and again Egs. (4)—(6)
describe the behavior as a function of u. The mean
of asymmetric random walks when the sticking PDF
is exponential grows linearly in time ({r} ~ vayt) for
all values of u.

Exponential flight PDFs can lead to different be-
havior, depending on the symmetry. If 2 < v < 3,
asymmetric random walks are superdiffusive while
symmetric walks are normally diffusive, as seen in
Section 3.2. The case where “flights” are actually steps
of constant length, as has been considered previously
[2], is equivalent to exponential flight PDFs — again,
the important aspect is that all moments of the flight
PDF are finite, and again, asymptotic behavior de-
pends on the presence or absence of symmetry.

3.3.2. Higher dimensions

The results can be easily extended to higher dimen-
sions. The variance in higher dimensions can be bro-
ken up into components:

ol=ir-r (- =0l+ol+0? (32)

in three dimensions, for example. If flights are taken
in a random (symmetrically chosen) angular direction
with flight distance described by a power law PDF, the
results of the previous section with vaye = 0 hold (al-
though the coefficients may be somewhat different).
The results for v,ye # 0 apply if a higher-dimensional
asymmetric random walk can be broken up into carte-
sian components.
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3.3.3. Correlated random walks

Our results have been derived for independent steps
and pauses. For cases where the steps are correlated,
the results can be different (for example, if all the
steps are in the same direction for a given random
walker, or if all pauses are the same length). In some
cases, random walks with short-range correlations can
be treated as random walks with uncorrelated steps
on a longer time scale. In this way the results for the
asymptotic behavior can still apply. This approach is
discussed in [2].

4. Experimental system

We now describe an experimental study of transport
that yields an asymmetric random walk. An annular
tank (Fig. 2) rigidly rotates at 1.0 Hz (6.28 rad/s) (the
geometry with a flat-lid and sloping bottom are de-
scribed more fully in [44]). The lid is flat and the bot-
tom has a gentle slope; the depth ranges from 17.1 cm
at the inner radius (r;, = 10.8cm) to 20.3cm at the
outer radius (royy = 43.2 cm); the slope is for the Beta
effect used to model the curvature of planets in pre-
vious geophysical experiments [45]). An annular ring
with inner radius 10.8 cm, outer radius 19.4 cm, and
height 6.0cm is placed on the bottom of the annulus.
Because of the rapid rotation, the Taylor-Proudman
theorem ensures that the velocity field will be two-
dimensional [45,46] except for thin boundary layers
at the top and bottom (Ekman layers) and near the
vertical walls (Stewartson layers).

Fluid is pumped through two concentric rings
of 120 small holes (diameter 0.26cm), in through
aring at r = 18.9cm and out through a ring at
r = 27.0cm. As a consequence of the radial pump-
ing, a strong azimuthal jet traveling in the counter-
rotating direction (“westward”) is produced between
the rings of forcing holes. The fluid between the out-
flow ring of holes and the outer wall is motionless
for low pumping rates. Fluid above the annular ring
must also be motionless, by the Taylor-Proudman
theorem.

For moderate pumping rates, the instability of the
shear layer between the azimuthal jet and the motion-

video camera

—r A

-
A
I

>

d d 2d

Fig. 2. Sketch of the rotating annulus. Water (kinematic viscosity
0.009 cm?/s) is pumped in through one ring of holes (marked
I), and out through another ring of holes (marked O). The
experiment is viewed through a video camera rotating above
the experiment.

less fluid results in a chain of vortices above the forc-
ing holes [45]. Against the annular ring, the inner shear
layer is a Stewartson boundary layer, which remains
stable. In the data presented here, fluid is pumped at
a rate of 52.0cm? /s, resulting in four large vortices
(Fig. 3). At this pumping rate, the motion of the vor-
tices is chaotic, as shown in the velocity power spectra
(measured by a hot film probe placed at r = 35.1cm)
in (Fig. 4).

Transport is measured by putting several hundred
small (~ 1 mm diameter), neutrally buoyant tracer par-
ticles into the tank. They are illuminated by light shin-
ing through the outer cylinder of the annulus and are
viewed through a video camera rotating above the ex-
perimental set up. Automated tracking techniques [47]
are used to find the trajectories of all the particles visi-
ble in the flow (usually 540 at a time). Individual par-
ticles can be tracked for times up to 1000 s; particles
are lost when they drift to the inside or outside of the
annulus, or if they drift vertically out of the illuminated
region. As discussed in Section 2, small passive scalar
particles in two-dimensional incompressible fluid flow
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Fig. 3. Streaks formed by 100 s long trajectories of 12 particles reveal the presence of four vortices. The inner and outer circles
represent the annulus boundaries, and the grey ring represents the annular barrier.

Velocity Time Series

I

Velocity (cm/s)

(b)

L { 1

0 200 400

t(s)

Power Spectra

P(f) (cmzls)

| Il 1 L
0 005 0.10 0.15 020 0.25

f (Hz)

Fig. 4. Velocity time series and power spectra for (a) a time periodic flow (from [48], not discussed in this paper), and (b) chaotic
flow, corresponding to Fig. 3. The noise floor in (b) is more than two orders of magnitude larger than in (a).

obey Hamilton’s equations of motion, with the stream-
function as the Hamiltonian.

Previous experiments [32,48,49] have used a dif-
ferent forcing configuration, pumping fluid in through
the inner ring and out through the outer ring at
r = 35.1cm; this also produces a vortex chain.
Physical perturbations [48] have resulted in quasi-

periodic (see Fig. 3) and chaotic velocity fields,
while high pump rates [49] have previously been
studied only with quasi-periodic velocity fields.
Unlike previous work, in the current experiments
the Eulerian chaos arises due to natural instabil-
ities and not due to the presence of a physical
perturbation [48].
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Fig. S. Trajectories of three tracer particles. The beginning of each trajectory is marked with a triangle, the end with a circle. Nearly
all of the flight behavior is in the outer jet; a brief flight in the inside can be seen in (a). The chaotic motion of the four vortices
can be seen in (b), where the particle spends most of its time in the same vortex which moves erratically.

5. Results

Trajectories of the individual particles (Figs. 5 and
6) reveal complicated motion. The vortices are ad-
vected by the jet, so that in the reference frame of the
tank they move in the counter-rotating direction. In
the reference frame of the vortex chain, the fluid out-
side the vortex chain, which is nearly motionless with
respect to the annulus, appears as a jet in the opposite
(co-rotating) direction. Fig. 5 shows the trajectories of
three particles as they alternate between times stick-
ing inside one of the vortices and flight motions in the
outer jet. (The co-rotating direction is +6.) The four
vortices are not stationary but move erratically. (The
pictures shown are taken in a frame of reference co-
rotating with the average speed of the vortex chain,
but there is substantial variation in the instantaneous
speed of each vortex.)

Figure 6 shows the angular position of the parti-
cles as a function of time. The oscillatory behaviors
correspond to motion when the particle is “stick-
ing” in a vortex, and the longer diagonal lines are
flights in the outer jet. Flights are distinguished from
sticking motions by examining the azimuthal dis-
tance traveled before reversing direction: particles
travel in a vortex for at most %n rad before chang-
ing directions, while a particle that leaves one vortex
and enters the next (the minimum flight distance)
will move at least %JT rad. Unlike previous experi-
ments [32,48,49], there is no strong inner jet and
particles do not travel long distances on the inner

@ (rad)

50

(a)

8
T
|

30 ®) -

t(s)

Fig. 6. Angular displacement €(¢) as a function of time for
the trajectories shown in Fig. 5. Diagonal lines indicate flights,
while the small oscillations correspond to particle motion within
a vortex. Despite the chaotic motion of the vortices, a clear
distinction can be made between flight behavior and sticking
behavior.

side of the vortex chain. Approximately 10% of
the flights seen in the experiment are short hops
on the inner side of the vortex chain, from one
vortex to an adjacent vortex; these hops take less



E.R. Weeks et al./Physica D 97 (1996) 291-310 303

10

10° ¢

L L 1 )

|

Ll

T L .

100 300

t (s)

Fig. 7. Flight probability distribution function, showing power law decay with exponent x = 2.2 £ 0.1. The error bars show the
statistical uncertainty (+v/N). The value of y, corrected for finite trajectory durations (cf. footnote 2), is 4 = 1.9 £0.2.

than 40s, and do not contribute to the long time
statistics.

The PDF for the flight times shows a power law
decay, Pr(t) ~ t*, with u = 1.9 + 0.2 (Fig. 7).2
As p < 3, the flight motions correspond to Lévy
flights. Previous work [32,48,49] has found power law
flight behavior in a variety of flows. What is remark-
able in the current work is that the power law be-
havior exists despite the presence of Eulerian chaos.
Although the vortices are moving erratically with re-
spect to each other, particle motion still displays the

2To obtain the exponents u and v from the PDFs, we must
correct the measured slope of the PDFs on log-log plots. The
measured exponents come from experimental trajectories with
finite durations, and are different from the exponents which
would be measured from data of infinite duration. We create
artificial data with known power law decay, truncate the data
to make finite artificial trajectories (with times chosen from
the experimental data), and construct PDFs from the artificial
data which are compared with the actual data. These corrected
exponents are the ones discussed in the text.

effects of long time correlations. The sticking time
PDF shown in Fig. 8 also shows a broad distribu-
tion of time scales. The long term transport can be
deduced from the model presented in Section 3: tak-
ing v = 1.3 and & = 1.9 the variance should grow
as t¥ with y = 24+ v — u =~ 1.4. While all simi-
lar flows we have studied have clear power law de-
cays of the flight PDFs, the sticking PDF behavior is
sometimes unclear [48,49]. In some cases it appears
that there is a crossover to exponential decay at very
long times. If the tail of the sticking PDF shown is
exponential, then we would expect y = 2 (see discus-
sion at the end of Section 3). More data are needed
to resolve the behavior of the sticking PDF at long
times.

The experimentally determined variance for this
flow is shown in Fig. 9 (see [48] for a description of the
variance calculation). It is difficult to track particles
for long enough times in this flow to gather the statis-
tics necessary to determine the variance accurately;
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Fig. 8. Sticking probability distribution function. A fit to the data yields a slope of —1.5 % 0.2 (solid line). The value of v, corrected

for finite trajectory durations (cf. footnote 2), is v = 1.3 £0.2.

<(0-<8>)">
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Fig. 9. Variance (1) for the ensemble of tracer particles (solid
line).

hence quantitative comparison with the results of Sec-
tion 3 is difficult. However, the behavior is clearly su-
perdiffusive with an exponent y between 1.5 and 2.0.

The failure of the variance to reach its asymp-
totic behavior despite the large number of long time

10° ¢
10' b
4 N
VIOO L S\er'
_|t -
10" |
0 1 2 3
10 10 10 10
t(s)

Fig. 10. Mean particle position, (6(¢)) (solid line).

trajectories can be understood from an analysis of
crossover times in the model. The time necessary to
approach the asymptotic state can be calculated by
retaining lower-order terms in the expansion for o
(see Appendix B for details). Using the experimen-
tal values of # = 1.9,v = 1.3, and cutoff times
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m

Fig. 11. (a) Phase diagram for the tables in Appendix B. The
regions shown correspond to the regions discussed in Tables
5-7. The axes are the flight exponent x and sticking exponent v.

tF = 225, ts = 105, yields o ~ 0.055¢'4 — 01071
A plot of this function on a log-log scale (Fig. 12)
does not reach a slope of 1.5 until 400s, and our data
only extend to ~ 500s. This slow convergence to
asymptotic behavior is a generic feature of Lévy pro-
cesses and complicates analysis in many experimental
situations and numerical simulations.

Fig. 10 shows that the mean particle position (x)
grows approximately linearly with time for most of the
range. For longer times, (x) appears to start growing
faster than linearly in time. For times less than a vortex
turnover time, linear growth is expected, as all particles
are moving with constant velocity (whether in a vortex
or in the jet). For longer times, the model predicts
(for w = 1.9 and v = 1.3) that (x) ~ 19%; if the
sticking PDF has an exponential tail, (x) ~ r. It is
probable that the asympotic scaling is not reached due
to lack of statistics at long times (see discussion in
Appendix B).

6. Conclusions

When the CLT is applicable, symmetry considera-
tions do not affect the asymptotic diffusive behavior

slope

13 T Sy Lol
10 100 1000 10000

t(s)

Fig. 12. Graph of slope of the function Cr¥ + c't?’ for
y = 1.40, ' = 1.05, corresponding to the predictions of the
mode] for 4 = 1.95, v = 1.35 measured from the experiment
(after corrections due to finite time effects; see Section 5). The
constants are C = 0.055 and C’ = —0.10 (from Table 7, with
n=0 p=1, vl?ms = vgve = 0.0058 rad/s, tp = 22 s, t5 =
10's, and PS0 = Pg = (0.5). There is a broad region with chang-
ing slope.

of random walks. However, when the sticking time
PDF has an infinite first moment, the transport is
subdiffusive for the symmetric case and either sub- or
super-diffusive for the asymmetric case. In cases with
Lévy flights (divergent second moment of the flight
PDF), an arbitrarily small amount of asymmetry or
bias can change the asymptotic behavior from subd-
iffusive to superdiffusive, as discussed in Section 3.
Our experimental results demonstrate the need
to consider asymmetry. Transport in the experi-
ment is a result of competition between trapping in
the vortices and motion in the jet, which carries
particles between vortices for long distances in one
direction only. Good qualitative agreement is found
between experimental transport and the transport
predicted based on the flight and sticking PDFs.
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Table 4

List of common symbols used in this paper

Symbol Meaning

T Mean time between the start of successive steps

g, 1S Minimum time for short flight, sticking events (see
Eqgs. (15) and (16))

(t5). (ts) first moment of flight, sticking PDFs

“w Power law decay exponent for the flight PDFs
(see Eq. (15))

v Power law decay exponent for the sticking PDFs
(see Eq. (16))

Y Variance exponent: 0% ~ ¥

PS, PS0 Probability that first event is a flight event, sticking
event

Pl Pr Probability a flight is to the left (—x), right (+x)

vy, Ur Velocity in left direction, right direction

(v; > 0 for leftward motion)
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Appendix A. Notation

Table 4 contains a summary of the important no-
tations used in this paper. For a random walk alter-
nating between flight events and sticking events, T =
{ts) + (ts) when both moments are finite (u > 2,
v > 2).

e Exponent £ Coefficient K
I : )/ T
3 (ls)fu_l
; B-wQ2-w7T?
)y
o (3-v)Q2—-v)T2
2(1f)(ts)(l’£(:f)—Pg(rs))-p-(;sz)(,f)_(,s>(,f2)
X 272
I I 1
-1 ~(:S)z[i’“
8 T C—w)r(p)
r2-v) L=y v—1
e B (m—u)r( +u.~v)) gl
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N - rle—u 2u-2 2-2
e (el ) w8
Py )
0 —PQtr)

Note: vaye = pror — o1y #0, (x) ~ K vavetﬂ + K ’uavetﬂ/A The terms have been calculated to second order for each region shown
in Fig. 11. To use this table, determine which two terms have the largest exponent for a given value of u and v. The term with the
third largest exponent is not necessarily the third-order term, as the calculations have only been done to second order. In this table
T is defined as (t;) + (#). Terms containing {t¢) are only valid for & > 2, and terms containing (ts) are only valid for v > 2.
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Anomalous diffusion results for symmetric random walks
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Region Exponent y Coefficient C
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calculated to second order. See the footnote to Table 5 for an explanation on how to use this table.

pvy =0, 02 ~ Cvmn Y 4+ C’u2 17 For each region shown in Fig. 11, the terms for o2 have been

Table 7
Anomalous diffusion results for asymmetric random walks
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Table 7
Continue
Region Exponent y Coefficient C
+(55) 200 T + 0 vde + (57 ) )07
uf? 2 2y,2
+ 2o ) (3002 — 4 tas) = 20)%) V2,
5 2
+ (P2 (62)00) - 2062)0) vhe
. —POp)?
+( B ) [y shed +3h) + ()22 ] vde
+ ("f}f{“) [<zf><ts> (192 = 40} 1) = (1))
(P92 (15) 1)
+3(2)(8)* + 30tp) <2>] Vave — (—S-,Z—— V2,
P i)
( e )[2< (16)2 + (2D + 022 16) + 20t (15)* ] vE,e
I 2 (2—#)( 2 _Uz%ve)
1-
u (o= ) [ = Die + (= D) g (vs — vhe)
2 (2— 1
2tu—v (reroses) (@ =1 = vvde + 4= Dofn g 0™
_ 213 (w) - Qv—1) 2,2-2v,2
= 2v-2 (r2(2 W2 Qu— 1))( IS Vave
2r—u) u—l 1-v 2
2+v-n (rewraam)  fs Vi
v —_4 2LGv=3) 4TI Q=D ar) +1-is] ) 1, 12,3-3 2
F3-nriR—v)rrerev-2)rGuv-3) s ave
1-
v—l (e ) [0 vhe + (Rivin ] 1™
2P 1
S RN
2 2
2420 -2 (r Q- (u-2)T (2—u+v)—l“(3—2u+2v))) 222

r2Q2—nIr2Q—u+v)ri(G-2u+2v)

_( _2e-wrie-w 2u 2,222
r2e—wria—2u+2v) 5 s

Note: vave = prur — pivy; # 0, 62 ~ CtY +C'tY’. For each region shown in Fig. 11, the terms for o2 have been calculated to
second order. For an explanation on how to use this table, see the footnote to Table 5.

Appendix B. Second-order terms

The asymptotic behavior of (x) and (x?) depends
only on the leading terms in the expansion of Egs. (27)
and (28). In order to study the approach to the asymp-
totic limit, it is necessary to calculate higher-order
terms. In this appendix, we use Eq. (31) for the
expansion of the Laplace transform of the PDFs to
produce the second-order terms. The variance will

scale in time, generally, as o2(t) ~ Ct? + C'tY with
¥’ < y. The asymptotic behavior, given in Section 3,
will always be given by the largest exponent.
Regions with different second-order terms are
shown in Fig. 11. We calculate the highest-order
terms for each region; these are listed in Tables 5-7.
The calculations are valid to second order, so that
while several terms are listed for each of the regions
shown in Fig. 11, only the two terms with the largest
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exponents are useful. The other terms may have ex-
ponents which are smaller than neglected third-order
terms that do not appear in the table.

As discussed in Section 5, crossover times must
be considered in deducing the anomalous diffusion

exponent from data. If the variance o2 is given by
o2ty =at” +btY, y >y, (B.1)

then the slope on a log-log plot is given by
d(In 62)/ d(In 1):

y + v (b/ay? Y
1+ (bfayn?'~r

slope(t) = (B.2)

which as t+ — 0 has the value y" and as t — o0 has
the value y, as expected. If y —y' is small, the time to
crossover to the asymptotic behavior is very large. For
example, in Fig. 12, with b/a = —1.82, y = 1.40 and
y' = 1.05, it takes 400 s for the measured exponent
to get below 1.5, within 0.1 of the correct asymptotic
value. (When b/a is negative, as in Fig. 12, there is
a divergence of the slope when the denominator van-
ishes in Eq. (B.2)).
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