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Correlations of structure and dynamics in an aging colloidal glass
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Abstract

We study concentrated colloidal suspensions, a model system which has a glass transition. Samples in the glassy state show aging, in that
the motion of the colloidal particles slows as the sample ages from an initial state. We study the relationship between the static structure and the
slowing dynamics, using confocal microscopy to follow the three-dimensional motion of the particles. The structure is quantified by considering
tetrahedra formed by quadruplets of neighboring particles. We find that while the sample clearly slows down during aging, the static properties as
measured by tetrahedral quantities do not vary. However, a weak correlation between tetrahedron shape and mobility is observed, suggesting that
the structure facilitates the motion responsible for the sample aging.
c© 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

When some liquids undergo a rapid temperature quench they
can form glasses. This occurs at a glass transition temperature
Tg which often depends on the cooling rate. As the system
is cooled, the approaching glass transition is marked by a
dramatic increase in the macroscopic viscosity of the liquid,
and a corresponding increase in the microscopic time scales
for motion [1–4]. Both the viscosity and the microscopic
relaxation time can change by many orders of magnitude as the
temperature decreases by merely 10%. Once in the glass state,
another phenomenon is noted, that of aging: the dependence of
the properties of the system on the time elapsed since reaching
Tg . When such behavior is observed the system is said to be
out of equilibrium, a fact that could be anticipated by noting
that the dependence of Tg itself on cooling rate implies the
glass transition is not an equilibrium phenomenon. Aging most
prominently manifests itself in the dynamics: the microscopic
relaxation time scale depends on the age of the sample.

Attempts to explain these phenomena try to link the
microscopic structure to the microscopic dynamics. For
example, one might postulate that the increase in viscosity
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is caused by the growth of domains whose dynamics are
correlated [5]. However, no experiment has seen a structural
length scale characterizing such domains that grows or diverges
at Tg [1,6,7]. Likewise, aging might be due to some coarsening
of structure; as domains of glassy structure grow, motion
is slowed, which in turn slows the further growth of these
domains. However, these domains have not been identified, and
currently no structural features have been identified that explain
aging dynamics [8,9].

Recently, some interesting developments in the study of
aging non-equilibrium systems have been brought about by
the adoption of dense colloidal suspensions as model systems
for liquids, glasses and gels [7,8,10–13]. Colloidal suspensions
consist of solid particles in a liquid, and the motion of the
particles is analogous to that of atoms or molecules in a more
traditional material [10,14,15]. In these systems, the particle
interactions can easily be tuned from repulsive to attractive. A
common case is when particles interact simply as hard spheres
with no interactions, attractive or repulsive, other than when
they are in direct contact [10,16]. In all cases, a major control
parameter is the packing fraction φ. For hard spheres this is the
only control parameter and when φ is raised above a value of
φg ≈ 0.58 the system becomes glassy and the aging process
begins.
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While structural changes in an aging system remain unclear,
two experiments studying colloids have characterized the
dynamics. Cipelletti and co-workers [12] studied aging in a
colloidal gel using novel light scattering techniques and showed
that the dynamics in such a non-equilibrium system present
striking temporal heterogeneities. Aging has also been studied
in a colloidal glass using confocal microscopy [13]. In that
study both temporal and spatial heterogeneities were seen.
However, despite the ease with which a colloidal glass can be
formed and observed a detailed understanding of the structural
changes that accompany aging and the slowing of dynamics has
not yet been achieved.

In this paper we study the structure of an aging colloidal
glass by considering how colloids pack together. Entropy can
be maximized by optimizing packing in a dense suspension.
Consider the intriguing case of the crystallization of hard
spheres. When spheres arrange into a crystalline lattice, they
lose configurational entropy. However, they each have more
local room to move close to their lattice site, and thus
the vibrational entropy is larger. This increase in vibrational
entropy outweighs the loss of configurational entropy due to
crystallization [17]. In practice, this argument holds true for
systems with volume fractions above φfreeze = 0.494, the point
at which the system begins to nucleate crystals; below φfreeze,
the configurational entropy dominates and the system prefers
an amorphous, liquid configuration [10].

For glasses, we consider a different sort of packing. The
most efficient way to pack four spheres of diameter d in
three dimensions is to place them at the vertices of a regular
tetrahedron with edge length d . In this configuration, the
effective volume fraction for the four spheres reaches a
surprising 0.78. In other words, for a given volume fraction φ,
locally four particles can maximize their entropy by arranging
into a regular tetrahedron consistent with the global volume
fraction φ, thus giving them additional room to move. However,
regular tetrahedra do not tile 3D space and therefore the most
efficient macroscopic packing is that of a hexagonally packed
crystal at φhcp ≈ 0.74. Thus in a glass there is a frustration
between the drive to locally pack in tetrahedra to maximize the
local volume available to vibrations, and the inability to tile
3D space with such structures. This has been suggested as a
possible origin for the glass transition in simple liquids [18–
21].

We take advantage of the insight afforded to us by fast laser
scanning confocal microscopy [7,14,15,22] and study an aging
colloidal glass in terms of tetrahedral packing. We focus on
geometrical properties of the tetrahedra formed by the colloids
and look for correlations between these static quantities and
the conspicuous slowing of the dynamics as measured by the
average tetrahedral mobility. We find that while the distribution
of these static quantities does not age, they correlate weakly
with mobility, suggesting that the structure facilitates the aging
process.

2. Experimental methods

We suspend poly(methyl methacrylate) (PMMA) colloids
of diameter d = 2.36 µm in a mixture of 15% decalin
and 85% cyclohexylbromide by weight. The mixture closely
matches the density and refractive index of the particles, thus
greatly reducing sedimentation and scattering effects. The size
polydispersity of the colloids (≈5%) prevents crystallization.
The particles are sterically stabilized against van der Waals
attractions by a thin layer of poly-12-hydroxystearic acid [23].
We dye the colloids with rhodamine 6G [22]. The particles also
carry a slight charge due to the dye. In this paper, we measure
all lengths in terms of the diameter d and all times in terms of
τdiff, the time a particle would take to diffuse its own diameter
in the dilute limit. Given the solvent viscosity η = 2.25 mPa s
at T = 295 K, this time is d2

6D = 11.4 s where D =
kBT

3πηd .
We acquire three-dimensional images by fast laser scanning

confocal microscopy at a rate of 1 every 26 s. The observation
volume measures 26d×25d×4.2d. At these high densities (φ >

0.58) the colloids move slowly and can easily be tracked using
established analysis techniques [15,22,24]. The 3D positions
of ∼2500 particles are measured virtually instantaneously with
an accuracy of 0.013d in the x–y plane and 0.021d along the
optical axis. We acquire data at least 25d away from the closest
wall, to avoid boundary effects [25,26]. We do not observe any
crystals in the bulk even after several weeks.

The phase behavior of this quasi-hard sphere system is
controlled by varying the packing fraction φ. The system
undergoes a glass transition when φ > φg ≈ 0.58 in agreement
with what is seen in hard sphere systems [10,15]. Here we
present data from a sample at φ ≈ 0.62 though we see
qualitatively similar results for all φ > φg .

Proper sample initialization is paramount when studying
aging and is ensured here by a vigorous, macroscopic stirring.
This shear melting effectively rejuvenates the glass and yields
reproducible dynamics that depend exclusively on tw, the time
elapsed since initialization. Data acquisition starts immediately
after rejuvenation. Transient macroscopic flows are observable
for the first 25 min ≈ 140τdiff and we set tw = 0, or age zero,
when they subside. The results below are insensitive to small
variations in this choice.

3. Results

We observe our sample for ∼700τdiff without disturbing it.
We then split the data in three time windows as follows: [0 −

100τdiff], [100−300τdiff] and [300−700τdiff]. This corresponds
to doing three experiments with samples aged tw = 0, 100 and
300τdiff respectively. The dynamics slow as the sample ages, as
shown in Fig. 1, where we plot the mean square displacement
for the three data portions averaged over all particles and over
all initial times within a given time window. At short and
medium times ( 1t

τdiff
< 10), particle motions are subdiffusive

as indicated by a slope less than unity on the log–log plot.
At longer times the slope tends to one; the time scale for
this upturn changes dramatically for different values of age tw
clearly indicating that the sample is out of equilibrium. It is this
slowing down of dynamics that we wish to analyze in terms of
tetrahedral structure.

We start our structural analysis by calculating the pair
correlation function g(r) and plot the result in Fig. 2. This
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Fig. 1. Aging mean squared displacement for a colloidal glass at φ ≈ 0.62.
The three curves represent three different ages of the sample. M: tw = 0τdiff,
×: tw = 100τdiff and ©: tw = 300τdiff. The dashed line has a slope of 1 and
represents diffusive behavior, not seen in this glassy sample.

Fig. 2. Pair correlation function g(r). The shaded area indicates the range of
interparticle distances used to define nearest neighbors.

function does not vary with age and thus is calculated by
averaging over all times. The first peak of g(r) is at r = 1.04d
which deviates somewhat from the ideal hard sphere position
(r = d). This can be explained by the slight charging mentioned
above and perhaps also by the uncertainty in the value of the
particle diameter which we deem to be at most 2%. Fig. 2 also
shows the characteristic double second peak found in many
glassy systems.

In order to study the tetrahedral packing in our sample we
begin by labeling as nearest neighbors every pair of colloids
whose separation is within the first peak of g(r), namely
0.74d > r > 1.38d , as is shown by the shaded area in Fig. 2.
The lower limit is chosen to eliminate artificially close pairs
which arise from the occasional error in particle identification,
while the upper limit corresponds to the first minimum of g(r).
Note that a completely coplanar arrangement of four spheres
in a square is excluded as a tetrahedron, as the diagonal would
have length

√
2d which is excluded by our upper limit. The

results presented here are insensitive to small variations in
these parameters and match those obtained using Delaunay
triangulation as a nearest neighbor finding algorithm.
A tetrahedron is then defined as a quadruplet of mutually
nearest neighbor colloids. To characterize each tetrahedron,
we calculate several geometrical characteristics. The first is
“looseness” b, defined as the average of the lengths of the 6
edges, or “bond lengths”, bi . An “irregularity” σb is defined as
the standard deviation of the bi . The looseness and irregularity
appear to be the most important geometric parameters to
characterize a tetrahedron shape, as will be discussed below.
The nondimensional tetrahedral volume V/d3 and surface area
A/d2 are also measured using the usual expressions:

V =
1
3!

|bi j · (bik × bil)| (1)

A =
1
2
(|bi j × bik | + |bi j × bil | + |bik × bil | + |b jk × bil |)

(2)

where bmn is the vector from vertex (particle) m to vertex n.
To quantify an effective aspect ratio of each tetrahedron,

we calculate the height of the tetrahedron as measured from
each of the four faces, and consider the largest height H
and shortest height h. We form aspect ratios from these two
heights by dividing by the areas (AH and Ah respectively) of
the tetrahedron face they are perpendicular to. Conceptually,
large values of H2/AH correspond to thin pointy tetrahedra,
and small values of h2/Ah correspond to flat pancake-like
tetrahedra. We thus term these two quantities “sharpness” and
“flatness” respectively.

In addition to these structural characteristics, we also
consider the dynamics by the tetrahedral mobility µ, which
is calculated by averaging the distances moved by the four
colloids over a time 1t = 50τdiff:

µ(t) =
1
4

4∑
i=1

|1Eri (t, 1t)| = 〈|1Eri (t, 1t)|〉i . (3)

The results that follow do not depend sensitively to the choice
of 1t . While the four particles must form a tetrahedron at time
t , we only require them to be within the observation volume at
time t + 1t , rather than still being mutual nearest neighbors.

To assess the value of these structural and dynamical
characteristics, we calculate the correlation coefficients
between µ and the other tetrahedral characteristics and show
them in Table 1. This is done in the standard way of defining
correlation coefficients,

C pq =
1
N

N∑
i=1

(pi − p̄)

σp

(qi − q̄)

σq
, (4)

where p and q are any two variables with averages p̄ and q̄, and
standard deviations σp and σq . In our case the sum runs over all
tetrahedra and all times. Eq. (4) can be generalized to measure
C p(t)q(t+τ), the correlation between variable p at time t and
variable q at a later time t +τ . Both Cµ(t)b(t+τ) and Cµ(t)σb(t+τ)

show an increase for τ < 1t , but this has a simple explanation:
more mobile tetrahedra tend to expand (increasing b and σb on
average) and thus µ(t) is correlated with b(t +τ) and σb(t +τ).
For all other pairs of variables, we observe a smooth monotonic
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Table 1
Correlation matrix for some geometrical characteristics of tetrahedra and
mobility

µ/d b/d σb/d V/d3 A/d2 H2

AH
h2

Ah

Mobility µ/d 1 0.045 0.07 0.018 0.036 0.016 −0.07

“Looseness” b/d – 1 0.37 0.82 0.98 −0.30 −0.50

“Irregularity”
σb/d

– – 1 −0.10 0.18 0.17 −0.82

Volume V/d3 – – – 1 0.91 −0.10 −0.11
Surface area
A/d2

– – – – 1 −0.29 −0.37

“Sharpness” H2

AH
– – – – – 1 −0.091

“Flatness” h2

Ah
– – – – – – 1

The matrix is symmetric with respect to the diagonal so the lower half is
not repeated. b is the average length of the tetrahedra edges (“bonds”) and
σb is the standard deviation of these lengths. See text for details of the other
characteristics. The coefficients reported with three significant digits have
an uncertainty of 0.005, those reported with two significant figures have an
uncertainty of 0.01.

decorrelation as function of lag time. We therefore focus our
attention on the simpler case of τ = 0. In Table 1, a value
of one would signify perfect correlation, a value of −1 would
represent perfect anticorrelation while a value of zero would
indicate completely uncorrelated data.

We also analyzed the mobility of the center of mass of
the tetrahedra, or “translation”, µc(t) = |〈1Eri 〉i |, and the
“expansion” with respect to the center of mass, µe(t) = 〈|1Eri −

〈1Eri 〉i |〉i (data not shown). We found Cµcq to be zero for
all static quantities q (within our uncertainties). This signifies
that the translation of the tetrahedra is independent of the
geometrical characteristics. On the other hand, we found Cµeq
to be slightly larger than the corresponding Cµq . This indicates
that statics instead do influence the expansion of tetrahedra. In
some sense µ is a combination of µc and µe and by calculating
the latter two quantities we highlight the fact that not all types of
mobilities are equivalent when studied in relation to statics. In
particular, expansion is the dynamical quantity most sensitive to
changes in structure as measured by tetrahedra. However, here
we choose to present our results in terms of µ because it is a
simpler quantity and maintains the same qualitative behavior.

Given that we are trying to understand the slowing of
the dynamics seen in Fig. 1, we focus on the correlation
between mobility µ/d and the structural characteristics. While
all the coefficients are quite small, those that relate mobility to
looseness b/d and irregularity σb/d are relatively big. Mobility
is also noticeably anticorrelated with the flatness h2/Ah . Some
insight into these correlations is gained by considering the
correlations between the different structural characteristics, as
shown by the other entries in Table 1. The flatness h2/Ah is
strongly anticorrelated with irregularity σb, and given the more
intuitive nature of σb and its simpler mathematical definition,
in what follows we focus on σb rather than h2/Ah . The volume
and area parameters, V/d3 and A/d2, are strongly correlated
with the looseness, which is sensible given that they all measure
the size of a tetrahedron.
Fig. 3. Contour plot showing the abundance of tetrahedra with a given
looseness and irregularity. The iso-curves are labeled relative to the peak
tetrahedral abundance at {b/d = 1.11; σb/d = 0.12}.

We therefore choose to study the looseness and irregularity
as being both relatively well correlated with mobility, both
easily defined in terms of the six tetrahedron edge lengths,
and weakly correlated with each other (as seen in Table 1).
The last point suggests that they capture two distinct
properties of tetrahedron structure which are both important for
mobility.

Fig. 3 shows the distribution of tetrahedra in the b, σb-
plane. The closed curves represent the levels of abundance of
tetrahedra with a given value of b and σb with respect to the
abundance of the most probable tetrahedron at b ≈ 1.11d and
σb ≈ 0.12d. Somewhat surprisingly, the distribution does not
age [27] and we therefore take an average over all times. Fig. 3
shows a broad variability of both looseness and irregularity.
However, these curves do outline a major axis along which
many of the tetrahedra lie. This axis suggests that the looser the
tetrahedron the more irregular it is bound to be. This is reflected
in the correlation coefficient of b and σb in Table 1, although its
relatively small value (0.37) highlights the breadth of the overall
distribution.

We present a qualitative picture of the relationship between
the above two static geometrical quantities and the dynamic
quantity of mobility in Fig. 4 which shows the average value
of mobility as a shade of grey. The more mobile combinations
of b and σb are darker and the less mobile combinations are
lighter. This rendering gives a clear qualitative view of the
correlations between these quantities. Specifically, we note that
mobility increases with both looseness and irregularity of the
tetrahedron. This makes intuitive sense: a larger value of b
suggests a smaller local volume fraction and thus more room
to move, and a larger value of σb likewise suggests a poorly
packed structure which may have more room to move. This also
agrees with previous results seen in supercooled colloidal fluids
[28–30]. Overplotted on the intensity plot of Fig. 4 are the same
abundance contours as seen in Fig. 3, showing us that the most
probable tetrahedra are a medium shade of grey — they are
neither the fastest or slowest tetrahedra.

We thus have two results, an overall slowing of dynamics
seen in Fig. 1, and a relationship between structure and
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Fig. 4. Plot of tetrahedral mobility 〈µ(1t = 50τdiff)〉, averaged over all ages,
versus looseness b/d and irregularity σb/d . The darker the color the more
mobile the tetrahedron. The contour lines are the same as in Fig. 3 and represent
the abundance of tetrahedra with a given value of b/d and σb/d.

dynamics seen in Fig. 4. This suggests a possible hypothesis
for aging, that the slowing of the dynamics is an accumulation
of structure corresponding to slower dynamics: a buildup of
tetrahedra with small values for looseness and irregularity. As
mentioned earlier, though, the overall distribution of tetrahedra
structural properties (Fig. 3) does not depend on the age of
the sample [27]. To reconcile this, we consider in more detail
the connection between structure, dynamics, and the age of the
sample.

We show the influence of looseness on the tetrahedron
mobility in Fig. 5 where we plot the average mobility of
tetrahedra as a function of looseness. We do so averaging
over the three sample ages separately. If we consider each
curve separately, we note a reproducible trend: the least mobile
tetrahedra are those with b ≈ d indicating that those tetrahedra
are very tightly packed. At very low values of b mobility
increases somewhat, although as mentioned above, tetrahedra
with b/d < 1 may be erroneous. Furthermore, note that there
are extremely few tetrahedra with b/d < 1 as shown by the
dashed curve representing P(b/d), the probability of finding a
tetrahedron with a given looseness averaged over all ages. We
therefore cannot put too much weight on the values of µ for b <

d . (The same can be said for tetrahedra with b > 1.17d.) In the
intermediate range there is a clear trend that looser tetrahedra
are more mobile. Thus the structure in some way facilitates
the aging, in that looser regions are more free to rearrange.
However, it is also important to note that each symbol is an
average over a broad distribution of mobilities associated with
the given value of b/d . In particular the standard deviation of
the distribution is almost comparable with the average value.
This simply means that the correlation between b and µ is a
weak, average effect and not, for example, a usefully predictive
relationship [30].

As expected with any plot involving the mobility of this
system, aging is clearly visible in Fig. 5 as the three curves are
shifted down to lower mobilities as tw increases. The overall
shape of the curves, however, does not depend on the age of the
system. In other words, we are not witnessing a relative shift in
Fig. 5. Average tetrahedral mobility as a function of looseness b/d . The three
curves represent three different ages of the sample. M: tw = 0τdiff, ×: tw =

100τdiff and ©: tw = 300τdiff. The dashed curve represents the distribution
P(b/d) and is shown here to highlight the lack of statistics at low (b/d < 0.98)
and high (b/d > 1.2) values of b/d.

Fig. 6. Average tetrahedral mobility as a function of irregularity σb/d. The
three curves represent three different ages of the sample. M: tw = 0τdiff,
×: tw = 100τdiff and ©: tw = 300τdiff. The dashed curve represents the
distribution P(σb/d) and is shown here to highlight the lack of statistics at
low (σb/d < 0.01) and high (σb/d > 0.2) values of σb/d .

the mobility of tetrahedra with varying looseness but merely an
overall slowing down of all tetrahedra.

A similar analysis on the relation between tetrahedral
mobility and irregularity is shown on Fig. 6. As a reference
we plot P(σb/d), the probability of finding a tetrahedron with a
given irregularity. This distribution does not age and is therefore
averaged over all times. Again, we look at the dependence of µ

on σb for the three ages in our experiments and find that there
is a positive correlation, as previously indicated in Table 1. Just
as in the case of b, this positive correlation is an average effect
and again, the distribution that leads to each of the symbols on
the figure is quite broad. Nevertheless, a reproducible difference
of ∼10% in the mobility differentiates very regular tetrahedra
from very irregular ones. Again, just as above, aging is evident
in the data and again it has no strong effect on the shape of
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the curves but rather uniformly slows down tetrahedra with all
values of irregularity.

4. Conclusion

We observe colloidal glasses and find clear signs of aging
in the mean squared displacement of the particles (Fig. 1).
We analyze the static structure of the aging sample in terms
of tetrahedral packing of colloidal particles. We find a broad
distribution of tetrahedra sizes and shapes as measured by
the distributions of tetrahedral “looseness” and “irregularity”,
corresponding to the tetrahedron’s mean edge length and the
standard deviation of edge lengths, respectively (Fig. 3). These
two quantities are slightly correlated; on average, the looser a
tetrahedron is the more irregular it will be. More importantly,
we find that tetrahedral shape and mobility are somewhat
correlated: the looser and the more irregular a tetrahedron is
the higher its mobility (Fig. 4). This suggests that aging might
be due to an increase in tight, regular tetrahedral structure,
but surprisingly the distribution of geometrical quantities is
age independent. Instead we find that aging indiscriminately
affects tetrahedra with all values of looseness and irregularity
by uniformly decreasing their mobility.

In conclusion, we find that static structure as measured by
tetrahedral quantities does not indicate the age of a glass. None
of the distributions of the geometrical quantities considered in
Table 1 show any aging. However, at any instant in time the age
of our sample must somehow be encoded in the positions of
the colloids and, for example, analyzing the spatial correlations
between tetrahedra, while beyond the scope of this paper,
might provide more insight into this matter. Finally, since aging
ought to result in subtle configuration changes, and since the
looser and more irregular tetrahedra allow for the most motion
to happen, we can infer that the local structure does indeed
facilitate the aging process. While it is worth noting that it
is not established that the most mobile particles are the most
important ones for aging, the connection between structure
and mobility holds true for less mobile particles as well.
Table 1 suggests that in this respect, tetrahedral irregularity is
the most significant quantity whose positive correlation with
mobility lends support to our original motivating idea that
perfect tetrahedra are an important structural element in a glass.
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